scholarly journals Detecting CSSLs and yield QTLs with additive, epistatic and QTL×environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Divya Balakrishnan ◽  
Malathi Surapaneni ◽  
Venkateswara Rao Yadavalli ◽  
Krishnam Raju Addanki ◽  
Sukumar Mesapogu ◽  
...  
2014 ◽  
Vol 40 (1) ◽  
pp. 37
Author(s):  
Hui-Zhen LIANG ◽  
Yong-Liang YU ◽  
Hong-Qi YANG ◽  
Hai-Yang ZHANG ◽  
Wei DONG ◽  
...  

2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
R. J. Lawn ◽  
A. T. James

The purpose of this paper and its companion1 is to describe how, in eastern Australia, soybean improvement, in terms of both breeding and agronomy, has been informed and influenced over the past four decades by physiological understanding of the environmental control of phenology. This first paper describes how initial attempts to grow soybean in eastern Australia, using varieties and production practices from the southern USA, met with limited success due to large variety × environment interaction effects on seed yield. In particular, there were large variety × location, variety × sowing date, and variety × sowing date × density effects. These various interaction effects were ultimately explained in terms of the effects of photo-thermal environment on the phenology of different varieties, and the consequences for radiation interception, dry matter production, harvest index, and seed yield. This knowledge enabled the formulation of agronomic practices to optimise sowing date and planting arrangement to suit particular varieties, and underpinned the establishment of commercial production in south-eastern Queensland in the early 1970s. It also influenced the establishment and operation over the next three decades of several separate breeding programs, each targeting phenological adaptation to specific latitudinal regions of eastern Australia. This paper also describes how physiological developments internationally, particularly the discovery of the long juvenile trait and to a lesser extent the semi-dwarf ideotype, subsequently enabled an approach to be conceived for broadening the phenological adaptation of soybeans across latitudes and sowing dates. The application of this approach, and its outcomes in terms of varietal improvement, agronomic management, and the structure of the breeding program, are described in the companion paper.


2012 ◽  
Vol 90 (12) ◽  
pp. 4239-4247 ◽  
Author(s):  
J. Osorio-Avalos ◽  
H. H. Montaldo ◽  
M. Valencia-Posadas ◽  
H. Castillo-Juárez ◽  
R. Ulloa-Arvizu

2020 ◽  
Vol 18 (3) ◽  
pp. 179-189
Author(s):  
Chunping Jia ◽  
Fengbin Wang ◽  
Jie Yuan ◽  
Yanhong Zhang ◽  
Zhiqiang Zhao ◽  
...  

AbstractComprehensive screening of rice (Oryza sativa L. subsp. japonica Kato) germplasm resources with different nitrogen (N) efficiency levels is effective for improving N use efficiency (NUE) while reducing pollution and providing high quality, yield, and efficiency agriculture. We investigated 14 indices of 38 varieties under three N application levels to assess differences among genotypes. Rice varieties were classified for screening and identifying N efficient. Descriptive statistical analysis results indicated significant differences in relative yield, and also in NUE indices (agronomic utilization rate and partial productivity of N fertilizer). The genotype main effects and genotype–environment interaction effects (GGE) biplot analysis was used to evaluate suitable varieties, compare the stable and high yield capabilities of different varieties, find the ideal variety, and describe the correlation, discrimination and representativeness of the indices under different N application levels. Descriptive statistical, discrimitiveness and representativeness and factor analysis were used to select indices, in which the panicle number per plant and soil and plant analyzer development (SPAD) value were the key indices for evaluation and identification. Heatmap and hierarchical cluster analysis based on the average value of evaluation indices, and scatter plot based on the comprehensive value of N efficiency (P) according to formula showed that all varieties could be divided into five types under different N treatments. Our findings work toward developing N efficient rice varieties to improve NUE, reduce N fertilizer application and thus N waste, consequently mitigating the effects of rice production on the environment to ensure food security and sustainable agricultural development.


2010 ◽  
Vol 61 (6) ◽  
pp. 475 ◽  
Author(s):  
Peyman Sharifi ◽  
Hamid Dehghani ◽  
Ali Moumeni ◽  
Mohammad Moghaddam

Genetic main effects and genotype × environment (GE) interactions were determined for cooking quality traits of rice (Oryza sativa L.) using a complete diallel cross of seven. The field experiments were carried out over 2 years as a randomised complete block design with two replications. Amylose content (AC), gel consistency (GC) and gelatinisation temperature (GT) were affected by both genetic effects and GE interaction. Grain elongation (GEL) was found to be controlled by genetic main effects and general combining ability (GCA) × environment interaction. The high magnitude of GCA variances for all traits indicated that additive effects were more prominent in the determination of these characteristics. Narrow-sense heritabilities for AC, GT, GC and GEL were 61.21, 60.83, 29.98 and 52.29%, respectively. Among the genetic and GE interaction effects, GCA and GCA × environment were the main components for all traits. Relatively large narrow-sense heritabilities for AC, GT and GEL indicated that selection for these traits could be possible. However, due to the significance of genotype × year effects for AC, GT, and GEL genetic materials should be evaluated over several years in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document