Epistatic Effects and QTL×Environment Interaction Effects of QTLs for Yield and Agronomic Traits in Soybean

2014 ◽  
Vol 40 (1) ◽  
pp. 37
Author(s):  
Hui-Zhen LIANG ◽  
Yong-Liang YU ◽  
Hong-Qi YANG ◽  
Hai-Yang ZHANG ◽  
Wei DONG ◽  
...  
2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
R. J. Lawn ◽  
A. T. James

The purpose of this paper and its companion1 is to describe how, in eastern Australia, soybean improvement, in terms of both breeding and agronomy, has been informed and influenced over the past four decades by physiological understanding of the environmental control of phenology. This first paper describes how initial attempts to grow soybean in eastern Australia, using varieties and production practices from the southern USA, met with limited success due to large variety × environment interaction effects on seed yield. In particular, there were large variety × location, variety × sowing date, and variety × sowing date × density effects. These various interaction effects were ultimately explained in terms of the effects of photo-thermal environment on the phenology of different varieties, and the consequences for radiation interception, dry matter production, harvest index, and seed yield. This knowledge enabled the formulation of agronomic practices to optimise sowing date and planting arrangement to suit particular varieties, and underpinned the establishment of commercial production in south-eastern Queensland in the early 1970s. It also influenced the establishment and operation over the next three decades of several separate breeding programs, each targeting phenological adaptation to specific latitudinal regions of eastern Australia. This paper also describes how physiological developments internationally, particularly the discovery of the long juvenile trait and to a lesser extent the semi-dwarf ideotype, subsequently enabled an approach to be conceived for broadening the phenological adaptation of soybeans across latitudes and sowing dates. The application of this approach, and its outcomes in terms of varietal improvement, agronomic management, and the structure of the breeding program, are described in the companion paper.


2021 ◽  
Vol 50 (2) ◽  
pp. 343-350
Author(s):  
Meijin Ye ◽  
Zhaoyang Chen ◽  
Bingbing Liu ◽  
Haiwang Yue

Stability and adaptability of promising maize hybrids in terms of three agronomic traits (grain yield, ear weight and 100-kernel weight) in multi-environments trials were evaluated. The analysis of AMMI model indicated that the all three agronomic traits showed highly significant differences (p < 0.01) on genotype, environment and genotype by environment interaction. Results showed that genotypes Hengyu321 (G9), Yufeng303 (G10) and Huanong138 (G3) were of higher stability on grain yield, ear weight and 100-kernel weight, respectively. Genotypes Hengyu1587 (G8) and Hengyu321 (G9) showed good performance in terms of grain yield, whereas Longping208 (G2) and Weike966 (G12) showed broad adaptability for ear weight. It was also found that the genotypes with better adaptability in terms of 100-kernel weight were Zhengdan958 (G5) and Weike966 (G12). The genotype and environment interaction model based on AMMI analysis indicated that Hengyu1587 and Hengyu321 were the ideal genotypes, due to extensive adaptability and high grain yield under both testing sites. Bangladesh J. Bot. 50(2): 343-350, 2021 (June)


2011 ◽  
Vol 91 (1) ◽  
pp. 37-48 ◽  
Author(s):  
M. Cogliatti ◽  
F. Bongiorno ◽  
H. Dalla Valle ◽  
W J Rogers

Fifty-seven accessions of canaryseed (47 populations and 10 cultivars) from 19 countries were evaluated for agronomic traits in four field trials sown over 3 yr in the province of Buenos Aires, Argentina. Genetic variation was found for all traits scored: grain yield and its components (grain weight, grain number per square meter, grain number per head and head number per square meter), harvest index, percent lodging, and phenological characters (emergence to heading, emergence to harvest maturity and heading to harvest maturity). Although genotype × environment interaction was observed for all traits, the additive differences between accessions were sufficient to enable promising breeding materials to be identified. Accessions superior in performance to the local Argentinean population, which in general gave values close to the overall mean of the accessions evaluated, were identified. For example, a population of Moroccan origin gave good yield associated with elevated values of the highly heritable character grain weight, rather than with the more commonly observed grain number per square meter. This population was also of relatively short stature and resistant to lodging, and, although it performed best when sown within the normal sowing date, tolerated late sowing fairly well. Other accessions were also observed with high grain weight, a useful characteristic in itself, since large grains are desirable from a quality point of view. Regarding phenology, the accessions showed a range of 160 degree days (8 calendar days in our conditions) in maturity, which, while not large in magnitude, may be of some utility in crop rotation management. Some accessions were well adapted to late sowing. Grain yield in general was strongly correlated with grain number per square meter. Principal components analysis (PCA) carried out for all characteristics provided indications of accessions combining useful characteristics and identified three components that explained approximately 70% of the phenotypic variation. Furthermore, a second PCA plus regression showed that approximately 60% of the variation in grain yield could be explained by a component associated with harvest index and grain number per square meter. Pointers were provided to possible future breeding targets.Key words: Phalaris canariensis, canaryseed, accessions, yield, phenology, genetics, breeding


2021 ◽  
Vol 12 ◽  
Author(s):  
Francisco J. Canales ◽  
Gracia Montilla-Bascón ◽  
Luis M. Gallego-Sánchez ◽  
Fernando Flores ◽  
Nicolas Rispail ◽  
...  

Oat, Avena sativa, is an important crop traditionally grown in cool-temperate regions. However, its cultivated area in the Mediterranean rim steadily increased during the last 20 years due to its good adaptation to a wide range of soils. Nevertheless, under Mediterranean cultivation conditions, oats have to face high temperatures and drought episodes that reduce its yield as compared with northern regions. Therefore, oat crop needs to be improved for adaptation to Mediterranean environments. In this work, we investigated the influence of climatic and edaphic variables on a collection of 709 Mediterranean landraces and cultivars growing under Mediterranean conditions. We performed genotype–environment interaction analysis using heritability-adjusted genotype plus genotype–environment biplot analyses to determine the best performing accessions. Further, their local adaptation to different environmental variables and the partial contribution of climate and edaphic factors to the different agronomic traits was determined through canonical correspondence, redundancy analysis, and variation partitioning. Here, we show that northern bred elite cultivars were not among the best performing accessions in Mediterranean environments, with several landraces outyielding these. While all the best performing cultivars had early flowering, this was not the case for all the best performing landraces, which showed different patterns of adaption to Mediterranean agroclimatic conditions. Thus, higher yielding landraces showed adaptation to moderate to low levels of rain during pre- and post-flowering periods and moderate to high temperature and radiation during post-flowering period. This analysis also highlights landraces adapted to more extreme environmental conditions. The study allowed the selection of oat genotypes adapted to different climate and edaphic factors, reducing undesired effect of environmental variables on agronomic traits and highlights the usefulness of variation partitioning for selecting genotypes adapted to specific climate and edaphic conditions.


2012 ◽  
Vol 90 (12) ◽  
pp. 4239-4247 ◽  
Author(s):  
J. Osorio-Avalos ◽  
H. H. Montaldo ◽  
M. Valencia-Posadas ◽  
H. Castillo-Juárez ◽  
R. Ulloa-Arvizu

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Divya Balakrishnan ◽  
Malathi Surapaneni ◽  
Venkateswara Rao Yadavalli ◽  
Krishnam Raju Addanki ◽  
Sukumar Mesapogu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document