scholarly journals Nano-synthesis of solid acid catalysts from waste-iron-filling for biodiesel production using high free fatty acid waste cooking oil

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
E. O. Ajala ◽  
M. A. Ajala ◽  
I. K. Ayinla ◽  
A. D. Sonusi ◽  
S. E. Fanodun
RSC Advances ◽  
2020 ◽  
Vol 10 (67) ◽  
pp. 41065-41077
Author(s):  
Boutaina Rezki ◽  
Younes Essamlali ◽  
Mina Aadil ◽  
Nawal Semlal ◽  
Mohamed Zahouily

Cesium modified natural phosphate was investigated as a catalyst in biodiesel production from rapeseed oil and low free fatty acids used in cooking oil.


2018 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
Hadrah Hadrah ◽  
Monik Kasman ◽  
Fitria Mayang Sari

Waste cooking oil is used oil that has been used for domestic purposes and has undergone changes, both physically and chemically. One effort that can be done to reduce the adverse effects of used cooking oil is changed the material used cooking oil into biodiesel. In this study of biodiesel production from waste cooking oil is done by using biodiesel transesterification reaction as generally through a pretreatment in order to reduce the number of Free Fatty Acid in cooking oil. The high number of Free Fatty Acid will complicate the separation of glycerol from biodiesel so that production of biodiesel will be slight. Test parameters of biodiesel quality produced by  transesterification process refers to the Indonesian biodiesel quality standard ISO 7182: 2015. The production of biodiesel from used cooking oil in this experiment using variations methanol and sodium hydroxide solution ratio to the used cooking oil is 1: 2; 1: 4 and 1: 8. Test results showed that the quality of biodiesel is in compliance with ISO 7182: 2015 on the parameters of viscosity, density and flame test. While the Free Fatty Acids remained above the quality standard ISO 7182: 2015.Keywords :    Waste cooking oil, Transesterification, Biodiesel


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. Gnanaprakasam ◽  
V. M. Sivakumar ◽  
A. Surendhar ◽  
M. Thirumarimurugan ◽  
T. Kannadasan

Cost of biodiesel produced from virgin vegetable oil through transesterification is higher than that of fossil fuel, because of high raw material cost. To minimize the biofuel cost, in recent days waste cooking oil was used as feedstock. Catalysts used in this process are usually acids, base, and lipase. Since lipase catalysts are much expensive, the usage of lipase in biodiesel production is limited. In most cases, NaOH is used as alkaline catalyst, because of its low cost and higher reaction rate. In the case of waste cooking oil containing high percentage of free fatty acid, alkaline catalyst reacts with free fatty acid and forms soap by saponification reaction. Also, it reduces the biodiesel conversions. In order to reduce the level of fatty acid content, waste cooking oil is pretreated with acid catalyst to undergo esterification reaction, which also requires high operating conditions. In this review paper, various parameters influencing the process of biofuel production such as reaction rate, catalyst concentration, temperature, stirrer speed, catalyst type, alcohol used, alcohol to oil ratio, free fatty acid content, and water content have been summarized.


Sign in / Sign up

Export Citation Format

Share Document