scholarly journals Advantage of fat-derived CD73 positive cells from multiple human tissues, prospective isolated mesenchymal stromal cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eriko G. Suto ◽  
Yo Mabuchi ◽  
Saki Toyota ◽  
Miyu Taguchi ◽  
Yuna Naraoka ◽  
...  

Abstract Somatic stem cells have been isolated from multiple human tissues for their potential usefulness in cell therapy. Currently, mesenchymal stromal cells (MSCs) are prepared after several passages requiring a few months of cell culture. In this study, we used a prospective isolation method of somatic stem cells from gestational or fat tissues, which were identified using CD73 antibody. CD73-positive population from various tissues existed individually in flowcytometric pattern, especially subcutaneous fat- and amniotic-derived cells showed the highest enrichment of CD73-positive cells. Moreover, the cell populations isolated with the prospective method showed higher proliferative capacity and stem cell marker expression, compared to the cell populations which isolated through several passages of culturing whole living cells: which we named “conventional method” in this paper. Furthermore, the therapeutic potential of CD73-positive cells was evaluated in vivo using a mouse model of pulmonary fibrosis. After intranasal administration, murine CD73-positive cells reduced macrophage infiltration and inhibited fibrosis development. These results suggest that further testing using CD73-positive cells may be beneficial to help establish the place in regenerative medicine use.

2016 ◽  
Author(s):  
Ιωάννα Βαρελά

Η ανακάλυψη της μεθόδου του κυτταρικού επαναπρογραμματισμού ανθρώπινων δερματικών ινοβλαστών σε επαγόμενα πολυδύναμα βλαστοκύτταρα (induced pluripotent stem cells, iPSCs) το 2007 άνοιξε το δρόμο για τη μελέτη και την εξατομικευμένη θεραπεία πολλών χρόνιων νόσων. Επιδιώξαμε να δημιουργήσουμε iPS - κυτταρικές σειρές επαναπρογραμματίζοντας μεσεγχυματικά στρωματικά κύτταρα (mesenchymal stromal cells, MSCs) μυελού των οστών, μέσω μιας μεθόδου επαναπρογραμματισμού χωρίς ενσωμάτωση γονιδίων στο γενετικό υλικό των κυττάρων. Δερματικοί ινοβλάστες από φυσιολογικούς δότες και μεσεγχυματικά στρωματικά κύτταρα μυελού των οστών από φυσιολογικό δότη μεταμόσχευσης μυελού των οστών και από ασθενή με β-Μεσογειακή αναιμία (β-ΜΑ) διαμολύνθηκαν, μέσω λιποσωματικών φορέων, με συνθετικά mRNA που κωδικοποιούν τους μεταγραφικούς παράγοντες Oct4, Klf4, Sox2, Lin28, c-Myc. Στη συνέχεια, τα κύτταρα ελέγχθηκαν σε καλλιέργειες για τον σχηματισμό αποικιών πολυδύναμων βλαστοκυττάρων. Οι αποικίες απομονώθηκαν και με συνεχείς ανακαλλιέργειες δημιουργήθηκαν κυτταρικές σειρές, οι οποίες εξετάστηκαν για την πολυδυναμία τους με μεθόδους ανίχνευσης της έκφρασης των μεταγραφικών παραγόντων πολυδυναμίας (κυτταρομετρία ροής, RT-PCR, μελέτη του μεταγραφώματος με RNA μικροσυστοιχίες). Ως θετικός μάρτυρας και μέτρο σύγκρισης χρησιμοποιήθηκε πολύ καλά χαρακτηρισμένη εμβρυονική σειρά πολυδύναμων βλαστοκυττάρων. Οι iPS-κυτταρικές σειρές μελετήθηκαν, επίσης, ως προς τη λειτουργική τους πολυδυναμία με τον έλεγχο της ικανότητας τους να δημιουργούν in vitro εμβρυϊκά σωματίδια και in vivo τερατώματα μετά από υποδόρια εμφύτευση τους σε ανοσοανεπαρκείς ποντικούς, και ως προς τη δυνατότητα διαφοροποίησής τους σε αιμοποιητικά προγονικά κύτταρα. Η γενετική σταθερότητα των κυτταρικών σειρών ελέγχθηκε με DNA μικροσυστοιχίες συγκριτικού γονιδιωματικού υβριδισμού (aCGH). Απομονώθηκαν 3 iPS κυτταρικές σειρές από κάθε δείγμα κυττάρων, οι οποίες εμφανίζουν μεταγράφωμα πανομοιότυπο με εκείνο των πολυδύναμων εμβρυονικών βλαστοκυττάρων και. δημιουργούν εμβρυϊκά σωματίδια in vitro και τερατώματα in vivo, τα οποία αποτελούνται από ιστούς καταγωγής και από τα τρία βλαστικά δέρματα. Τα iPSCs των κυτταρικών σειρών πολλαπλασιάζονται για μεγάλο χρονικό διάστημα χωρίς μορφολογικές ενδείξες διαφοροποίησης. Με τη μέθοδο aCGH, στις iPS κυτταρικές σειρές μετά την 10η ανακαλλιέργεια ανιχνεύθηκαν πολυμορφισμοί στον αριθμό αντιγράφων (CNVs), τα οποία ήταν ελλείμματα μεγέθους περίπου 3 Mb. Η διαφοροποίηση των iPSCs σε αιμοποιητικά προγονικά κύτταρα οδήγησε στην παραγωγή CD34+ κυττάρων σε ποσοστό 8-10% των παραχθέντων κυττάρων με ασθενούς έντασης συνέκφραση του CD45, προσομοιάζοντας στο αιμαγγειακό στελεχιαίο κύτταρο. Στην παρούσα διατριβή παρουσιάζεται, για πρώτη φορά στην Ελλάδα, εξ όσων γνωρίζουμε, η τεχνολογία παραγωγής ανθρώπινων iPSCs με μια ασφαλή και αξιόπιστη μέθοδο. Οι iPSCs-κυτταρικές σειρές μπορεί να χρησιμοποιηθούν στη μελέτη ασθενειών, στον έλεγχο φαρμάκων και στην ανάπτυξη πρωτοκόλλων ιστικής μηχανικής και κυτταρικής θεραπείας.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 666-666
Author(s):  
Grazia Abou Ezzi ◽  
Teerawit Suparkorndej ◽  
Bryan Anthony ◽  
Jingzhu Zhang ◽  
Shilpi Ganguly ◽  
...  

Abstract Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. Several mesenchymal stromal cells have been implicated in hematopoietic niches, including osteoblasts, pericytes, CXCL12-abundant reticular (CAR) cells, and mesenchymal stem cells (MSCs). Members of the transforming growth factor (TGF) superfamily, in particular TGF-β, have a well-documented role in regulating osteoblast development. However, the contribution of TGF family member signaling to the establishment and maintenance of hematopoietic niches is largely unknown. Here, we characterize the role of transforming growth factor-β (TGF-β) signaling in mesenchymal stromal cells on the HSC niche. TGF-β receptor 2 (encoded by Tgfbr2) is required for all TGF-β signaling. To selectively disrupt TGF-β signaling in bone marrow mesenchymal stromal cells, we generated Osx-C re Tgfbr2fl/fl mice. Osx-Cre targets most bone marrow mesenchymal stromal cells (including osteoblasts, CAR cells, MSCs, pericytes, and adipocytes) but not endothelial cells or hematopoietic cells. Osx-C re Tgfbr2fl/fl mice are severely runted and most die by 4 weeks of age. We analyzed mice at 3 weeks, when the mice appeared healthy. Osteoblast number was severely reduced in Osx-C re Tgfbr2fl/fl mice, as assessed by histomorphometry and immunostaining for osteocalcin. Accordingly, microCT analysis demonstrated reduced tissue mineral density and cortical thickness of long bone and marked trabecularization of long bones in diaphyseal regions. Surprisingly, marrow adiposity, as measured by osmium tetroxide staining with microCT, was strikingly increased in Osx-C re Tgfbr2fl/fl mice. CAR cells are mesenchymal progenitors with osteogenic and adipogenic potential in vitro. To assess CAR cells, we generated Osx-Cre Tgfrb2fl/fl x Cxcl12gfp mice. Surprisingly, CAR cell number was significantly increased. However, despite the increase in CAR cells, the number of CFU-osteoblast (CFU-OB) in Osx-C re Tgfbr2fl/fl mice is nearly undetectable. Together, these data suggest that TGF-b signaling contributes to lineage commitment of mesenchymal progenitors. Specifically, our data suggest that TGF-β signaling suppresses commitment to the osteoblast lineage, while increasing adipogenic differentiation. We next asked whether alterations in bone marrow stromal cells present in Osx-C re Tgfbr2fl/fl mice affect HSC number or function. The increase in marrow adipocytes and loss of osteolineage cells is predicted to impair HSC maintenance, while the increase in CAR cells might augment HSCs. Osx-Cre Tgfrb2fl/fl mice have modest leukopenia, but normal red blood cell and platelet counts. Bone marrow and spleen cellularity are reduced, even after normalizing for body weight. The frequency of phenotypic HSCs (defined as Kit+ lineage- Sca+ CD34- Flk2- cells) is comparable to control mice. To assess HSC function, we performed competitive repopulation assays with bone marrow from Osx-Cre Tgfrb2fl/fl or control mice. Surprisingly, these data show that the long-term multi-lineage repopulating activity of HSCs from Osx-Cre Tgfrb2fl/fl mice is normal. Moreover, serial transplantation studies suggest that the self-renewal capacity of HSCs is normal. Thus, despite major alterations in mesenchymal stromal cell populations, the HSC niche is intact in Osx-Cre Tgfrb2fl/fl mice. Collectively, these data show that TGF-b signaling in mesenchymal progenitors is required for the proper development of multiple stromal cell populations that contribute to hematopoietic niches. Studies are underway to assess the impact of post-natal deletion of Tgfbr2 in mesenchymal stromal cell on hematopoietic niches. Since drugs that modulate the activity of TGF-b are in development, this research may suggest novel approaches to modulate hematopoietic niches for therapeutic benefit. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (19) ◽  
pp. 4965-4979 ◽  
Author(s):  
Julie Ng ◽  
Fei Guo ◽  
Anna E. Marneth ◽  
Sailaja Ghanta ◽  
Min-Young Kwon ◽  
...  

Abstract Patients with immune deficiencies from cancers and associated treatments represent a growing population within the intensive care unit with increased risk of morbidity and mortality from sepsis. Mesenchymal stromal cells (MSCs) are an integral part of the hematopoietic niche and express toll-like receptors, making them candidate cells to sense and translate pathogenic signals into an innate immune response. In this study, we demonstrate that MSCs administered therapeutically in a murine model of radiation-associated neutropenia have dual actions to confer a survival benefit in Pseudomonas aeruginosa pneumo-sepsis that is not from improved bacterial clearance. First, MSCs augment the neutrophil response to infection, an effect that is enhanced when MSCs are preconditioned with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist. Using cytometry by time of flight, we identified proliferating neutrophils (Ly6GlowKi-67+) as the main expanded cell population within the bone marrow. Further analysis revealed that CpG-MSCs expand a lineage restricted progenitor population (Lin−Sca1+C-kit+CD150−CD48+) in the bone marrow, which corresponded to a doubling in the myeloid proliferation and differentiation potential in response to infection compared with control. Despite increased neutrophils, no reduction in organ bacterial count was observed between experimental groups. However, the second effect exerted by CpG-MSCs is to attenuate organ damage, particularly in the lungs. Neutrophils obtained from irradiated mice and cocultured with CpG-MSCs had decreased neutrophil extracellular trap formation, which was associated with decreased citrullinated H3 staining in the lungs of mice given CpG-MSCs in vivo. Thus, this preclinical study provides evidence for the therapeutic potential of MSCs in neutropenic sepsis.


2015 ◽  
Vol 4 (3) ◽  
pp. 332-339 ◽  
Author(s):  
Francesca Bortolotti ◽  
Laura Ukovich ◽  
Vahid Razban ◽  
Valentina Martinelli ◽  
Giulia Ruozi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tian Zhou ◽  
Zenan Yuan ◽  
Jianyu Weng ◽  
Duanqing Pei ◽  
Xin Du ◽  
...  

AbstractMesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.


Author(s):  
Mariana A. Antunes ◽  
Cassia L. Braga ◽  
Tainá B. Oliveira ◽  
Jamil Z. Kitoko ◽  
Ligia L. Castro ◽  
...  

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-β, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1β and TGF-β levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.


2010 ◽  
Vol 19 (10) ◽  
pp. 1471-1483 ◽  
Author(s):  
Simone Maria Kluth ◽  
Anja Buchheiser ◽  
Amelie Pia Houben ◽  
Stefanie Geyh ◽  
Thomas Krenz ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rosario Hervás-Salcedo ◽  
María Fernández-García ◽  
Miriam Hernando-Rodríguez ◽  
Oscar Quintana-Bustamante ◽  
Jose-Carlos Segovia ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. Methods Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. Results Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. Conclusions Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


2021 ◽  
Vol 31 (3) ◽  
pp. 547-554
Author(s):  
Carmen Alexandra NECULACHI ◽  
◽  
Livia Ioana LETI ◽  
Alexandrina BURLACU ◽  
Mihai Bogdan PREDA ◽  
...  

Mesenchymal stromal cells (MSC) are nonhematopoietic cells with fi broblast-like morphology and multipotent capacity that are widely used in pre-clinical and clinical investigations. Unfortunately, the efficiency of MSC treatment is hindered by the poor survival rate after transplantation at the damaged tissue. The goal of this study was to investigate the fate of MSC exposed to various stimuli mimicking the in vivo microenvironment post transplantation. To this aim, murine bone marrow–derived MSC were stimulated with IFNgama and TNFalfa under low oxygen (hypoxia) or atmospheric (normoxia) conditions for 24 to 72 hours, in order to better mimic an ischemic injury. The results showed that MSC pre-stimulation with TNFalfa and IFNgama enhanced immunosuppressive pathways by over-expression of NOS2, IDO, COX2 and production of NO. However, MSC viability was affected by these two cytokines in dose-dependent and time-dependent manners. Besides, priming with TNFalfa and/or IFNgama under low oxygen concentrations revealed that significantly increased cell mortality rate and decreased NO production. Our data suggest that both hypoxia and infl ammation could impact the cell survival after transplantation and reinforces the necessity of further investigations to better understand MSC behavior after transplantation in order to identify the MSC-based strategies with the highest therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document