scholarly journals Aenigmachannidae, a new family of snakehead fishes (Teleostei: Channoidei) from subterranean waters of South India

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ralf Britz ◽  
Neelesh Dahanukar ◽  
V. K. Anoop ◽  
Siby Philip ◽  
Brett Clark ◽  
...  

Abstract Pronounced organism-wide morphological stasis in evolution has resulted in taxa with unusually high numbers of primitive characters. These ‘living fossils’ hold a prominent role for our understanding of the diversification of the group in question. Here we provide the first detailed osteological analysis of Aenigmachanna gollum based on high-resolution nano-CT scans and one cleared and stained specimen of this recently described snakehead fish from subterranean waters of Kerala in South India. In addition to a number of derived and unique features, Aenigmachanna has several characters that exhibit putatively primitive conditions not encountered in the family Channidae. Our morphological analysis provides evidence for the phylogenetic position of Aenigmachanna as the sister group to Channidae. Molecular analyses further emphasize the uniqueness of Aenigmachanna and indicate that it is a separate lineage of snakeheads, estimated to have split from its sister group at least 34 or 109 million years ago depending on the fossil calibration employed. This may indicate that Aenigmachanna is a Gondwanan lineage, which has survived break-up of the supercontinent, with India separating from Africa at around 120 mya. The surprising morphological disparity of Aenigmachanna from members of the Channidae lead us to erect a new family of snakehead fishes, Aenigmachannidae, sister group to Channidae, to accommodate these unique snakehead fishes.

2020 ◽  
Vol 51 (3) ◽  
pp. 444-471 ◽  
Author(s):  
Lauri Kaila ◽  
Kari Nupponen ◽  
Pavel Yu. Gorbunov ◽  
Marko Mutanen ◽  
Maria Heikkilä

Ustyurtiidae Kaila, Heikkilä & Nupponen, a new family of Urodoidea is introduced. The family is based on the genus Ustyurtia Kaila, Heikkilä & Nupponen, gen. n. The genus includes the type species U. zygophyllivora Kaila, Heikkilä & Nupponen, sp. n. and U. charynica Kaila, Heikkilä & Nupponen, sp. n., both from Kazakhstan. These two species, in particular the immature stages, have morphological attributes apomorphic of Urodoidea. The close affinity is also supported by DNA data based on several markers. We consider this new family warranted due to its sister group position to the remaining Urodoidea and a number of significant morphological differences in wing venation, male genitalia and the structure of the cocoon, apomorphic for Ustyurtiidae on the basis of an earlier published phylogeny. All other recognized genera of Urodoidea belong to the family Urodidae. The closest relatives and phylogenetic position of Urodoidea are not firmly established, but Urodoidea and Schreckensteinioidea have morphological similarities which, in the light of genetic analyses appear synapomorphic and possibly uniting these groups, rather than homoplasious as assumed earlier. The affinities of these superfamilies are discussed.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12597
Author(s):  
Alice M. Clement ◽  
Richard Cloutier ◽  
Jing Lu ◽  
Egon Perilli ◽  
Anton Maksimenko ◽  
...  

Background The megalichthyids are one of several clades of extinct tetrapodomorph fish that lived throughout the Devonian–Permian periods. They are advanced “osteolepidid-grade” fishes that lived in freshwater swamp and lake environments, with some taxa growing to very large sizes. They bear cosmine-covered bones and a large premaxillary tusk that lies lingually to a row of small teeth. Diagnosis of the family remains controversial with various authors revising it several times in recent works. There are fewer than 10 genera known globally, and only one member definitively identified from Gondwana. Cladarosymblema narrienense Fox et al. 1995 was described from the Lower Carboniferous Raymond Formation in Queensland, Australia, on the basis of several well-preserved specimens. Despite this detailed work, several aspects of its anatomy remain undescribed. Methods Two especially well-preserved 3D fossils of Cladarosymblema narrienense, including the holotype specimen, are scanned using synchrotron or micro-computed tomography (µCT), and 3D modelled using specialist segmentation and visualisation software. New anatomical detail, in particular internal anatomy, is revealed for the first time in this taxon. A novel phylogenetic matrix, adapted from other recent work on tetrapodomorphs, is used to clarify the interrelationships of the megalichthyids and confirm the phylogenetic position of C. narrienense. Results Never before seen morphological details of the palate, hyoid arch, basibranchial skeleton, pectoral girdle and axial skeleton are revealed and described. Several additional features are confirmed or updated from the original description. Moreover, the first full, virtual cranial endocast of any tetrapodomorph fish is presented and described, giving insight into the early neural adaptations in this group. Phylogenetic analysis confirms the monophyly of the Megalichthyidae with seven genera included (Askerichthys, Cladarosymblema, Ectosteorhachis, Mahalalepis, Megalichthys, Palatinichthys, and Sengoerichthys). The position of the megalichthyids as sister group to canowindrids, crownward of “osteolepidids” (e.g.,Osteolepis and Gogonasus), but below “tristichopterids” such as Eusthenopteron is confirmed, but our findings suggest further work is required to resolve megalichthyid interrelationships.


Zootaxa ◽  
2018 ◽  
Vol 4444 (4) ◽  
pp. 437 ◽  
Author(s):  
DMITRY SIDOROV ◽  
ZHONGE HOU ◽  
BORIS SKET

Three new species of the family Gammaridae—Gammarus troglomorphus, sp. n., G. parvioculatus, sp. n. from Lebap Province of Turkmenistan and Tadzocrangonyx alaicus, sp. n. from Batken Region of Kyrgyzstan are described and illustrated. Morphological studies of a closely related Turkmenistan population of G. cf. subaequalis-Garlyk, probably conspecific with Gammarus subaequalis Martynov, 1935 was provided. The affinity of new species to concerned taxa is discussed. To define phylogenetic position of mentioned species DNA barcode data are obtained. Gammarus troglomorphus and G. parvioculatus are close neighbors but exceedingly different morphologically. Gammarus troglomorphus is a troglobiont; G. parvioculatus is an eutroglophile, but with exception of slightly smaller eyes, not troglomorph. Both found only within small areas in the extreme East of Turkmenistan. Gammarus cf. subaequalis-Garlyk seems to extend from the same region far into the eastern Kyrgyzstan. 


Zootaxa ◽  
2019 ◽  
Vol 4668 (3) ◽  
pp. 301-328
Author(s):  
TERRY A. WHEELER ◽  
BRADLEY J. SINCLAIR

Paraleucopidae Wheeler fam. nov. is proposed for the previously unplaced New World genera Paraleucopis Malloch, Mallochianamyia Santos-Neto and Schizostomyia Malloch and undescribed Australian species. A key to genera of Paraleucopidae is provided. Paraleucopis is revised and includes nine species: P. auripes Wheeler & Sinclair sp. nov. (type locality: Andalgala, Argentina); P. bispinosa Wheeler & Sinclair sp. nov. (type locality: Socos, Coquimbo, Chile); P. boharti Wheeler & Sinclair sp. nov. (type locality: Andalgala, Argentina); P. boydensis Steyskal (type locality: nr. Palm Desert, California, USA); P. corvina Malloch (type species of genus; type locality: New Mexico, USA); P. mexicana Steyskal (type locality: Kino Bay, Mexico); P. nigra Wheeler & Sinclair sp. nov. (type locality: Portal, Arizona, USA); P. paraboydensis Wheeler & Sinclair sp. nov. (type locality: Willis Palms Oasis, California, USA); P. saguaro Wheeler & Sinclair sp. nov. (type locality: Usery Mtn Park, Arizona, USA). A key to the species of Paraleucopis is provided. The distribution of Paraleucopis is disjunct, with six species in the western United States and northwestern Mexico and three species in northern Chile and northern Argentina.                The sister group and superfamilial assignment of the Paraleucopidae cannot be established based on current knowledge although the family has affinities to some families of the Asteioinea sensu J.F. McAlpine. A well-supported hypothesis on the relationships of the families of the Acalyptratae will be required before the sister group relationships of Paraleucopidae can be determined. 


2010 ◽  
Vol 60 (2) ◽  
pp. 460-468 ◽  
Author(s):  
Miao Miao ◽  
Yangang Wang ◽  
Weibo Song ◽  
John C. Clamp ◽  
Khaled A. S. Al-Rasheid

Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella.


Zootaxa ◽  
2005 ◽  
Vol 891 (1) ◽  
pp. 1 ◽  
Author(s):  
Magdalena Szarowska ◽  
Andrzej Falniowski ◽  
FRANK Riedel ◽  
Thomas Wilke

The phylogenetic position of the subfamily Pyrgulinae within the superfamily Rissooidea has been discussed very controversially. Different data sets not only led to different evolutionary scenarios but also to different systematic classifications of the taxon. The present study uses detailed anatomical data for two pyrgulinid taxa, the type species of the subfamily, Pyrgula annulata (Linnaeus, 1767), and the type species of the little known genus Dianella, D. thiesseana (Kobelt, 1878), as well as DNA sequencing data of three gene fragments from representatives of eight rissooidean families to A) infer the phylogenetic position of Pyrgulinae with emphasis on its relationships within the family Hydrobiidae, B) to study the degree of concordance between anatomyand DNAbased phylogenies and C) to trace the evolution of anatomical characters along a multi-gene molecular phylogeny to find the anatomical characters that might be informative for future cladistic analyses. Both anatomical and molecular data sets indicate either a very close or even sister-group relationship of Pyrgulinae and Hydrobiinae. However, there are major conflicts between the two data sets on and above the family level. Notably, Hydrobiidae is not monophyletic in the anatomical analysis. The reconstruction of anatomical character evolution indicates that many of the characters on which the European hydrobioid taxonomy is primarily based upon are problematic. The inability to clearly separate some hydrobiids from other distinct families based on those characters might explain why until only a few years ago, "Hydrobiidae" was a collecting box for numerous rissooidean taxa (mostly species with shells small and lacking any characteristic features). The present study not only stresses the need for comprehensive molecular studies of rissooidean taxa, it also demonstrates that much of the problems surrounding anatomical analyses in rissooidean taxa are due to the lack of comprehensive data for many representatives. In order to aid future comparativeanatomical studies and a better understanding of character evolution in the species-rich family Hydrobiidae, detailed anatomical descriptions for P. annulata and D. thiesseana are provided.Key words: Pyrgulinae, Pyrgula, Dianella, Hydrobiidae, phylogeny, DNA, anatomy, Greece


Zootaxa ◽  
2018 ◽  
Vol 4415 (3) ◽  
pp. 452 ◽  
Author(s):  
P. R. PUGH ◽  
C.W. DUNN ◽  
S.H.D. HADDOCK

A new species of calycophoran siphonophore, Tottonophyes enigmatica gen. nov, sp. nov., is described. It has a unique combination of traits, some shared with prayomorphs (including two rounded nectophores) and some with clausophyid diphyomorphs (the nectophores are dissimilar, with one slightly larger and slightly to the anterior of the other, and both possess a somatocyst). Molecular phylogenetic analyses indicate that the new species is the sister group to all other diphyomorphs. A new family, Tottonophyidae, is established for it. Its phylogenetic position and distinct morphology help clarify diphyomorph evolution. The function and homology of the nectophoral canals and somatocyst is also re-examined and further clarification is given to their nomenclature.


Phytotaxa ◽  
2020 ◽  
Vol 443 (3) ◽  
pp. 211-257
Author(s):  
RENATA CARMO-OLIVEIRA ◽  
LUCIANA NASCIMENTO CUSTÓDIO ◽  
BERTA LANGE DE MORRETES ◽  
PAULO EUGÊNIO OLIVEIRA

Embryological data provides insights into the taxonomy and evolution of angiosperms.  Vochysiaceae is a mostly Neotropical family whose phylogenetic position was greatly influenced by reconstructions based on molecular data, and despite its monosymmetric and oligostemonous flowers, was included as a sister group of polysymmetric and polystemonous Myrtaceae. However, molecular data has yet to resolve the relationships between the genera inside the family. We analysed the early embryology of some species of five out of the six generally accepted Neotropical genera using sequential histological analyses to compare the microsporogenesis and gametogenesis and megasporogenesis and gametogenesis between clades and with the embryology of the well-studied Myrtales. We observed some marked differences in timing and developmental stages, which somewhat corroborate the clades defined from molecular data. Multiple archesporium and embryo sacs, as well as megagametophyte maturation and fertilization long after anthesis, characterized the Qualea-Ruizteranea-Callisthene (QRC) clade, while single embryo sac mature at anthesis characterized the Vochysia-Salvertia (VS) clade. Tri-cellular pollen only occurred in Salvertia convallariodora. Seven of the eight main embryological features supported the Myrtales as present in Vochysiaceae and the remaining one, inner integument with two layers of cells, was observed in some Qualea. Thus, the studied Vochysiaceae embryology conforms very well within the order and only their strongly monosymmetric and oligostemonous flowers are less common among Myrtales.


Author(s):  
Sergey Sokolov ◽  
Evgeniy Frolov ◽  
Semen Novokreshchennykh ◽  
Dmitry Atopkin

Abstract Liliatrema is a small genus of trematodes consisting of two species. Its systematic position has long been debated, partly because of the confusing reports about the structure of male terminal genitalia. Here we test the phylogenetic position of the genus Liliatrema using data on complete 18S rRNA and partial 28S rRNA gene sequences obtained for Liliatrema skrjabini. We also provide a detailed description of terminal genitalia in adult specimens of L. sobolevi and metacercariae of both Liliatrema species. The results of the 28S rDNA-based phylogenetic analysis indicate that Liliatrema falls within a well-supported clade, which also includes Apophallus and traditional opisthorchiids. This clade, in turn, is nested within a well-supported clade, containing Euryhelmis, Cryptocotyle and Scaphanocephalus. In the 18S+8S rDNA analysis, Liliatrema appears as a sister-taxon to the Cryptocotyle + Euryhelmis group. The Liliatrema + (Cryptocotyle + Euryhelmis) clade is a well-supported sister-group to the traditional opisthorchiids. The morphology of the terminal genitalia of the liliatrematids also corresponds to that of the opisthorchioids. Thus, the results of our morphological and phylogenetic analyses favour an unexpected conclusion that the genus Liliatrema belongs to the Opisthorchioidea. We propose that the genera Liliatrema, Apophallus, Euryhelmis, Cryptocotyle and Scaphanocephalus belong, respectively, within the subfamilies Liliatrematinae, Apophallinae, Euryhelminthinae and Cryptocotylinae of the family Opisthorchiidae.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4633 ◽  
Author(s):  
Michael Haas ◽  
Roger A. Burks ◽  
Lars Krogmann

Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species,Diversinitus attenboroughigen. & sp. n., Burminata caputaeriagen. & sp. n. andGlabiala barbatagen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.


Sign in / Sign up

Export Citation Format

Share Document