scholarly journals 5,7,3ʹ,4ʹ-Tetrahydroxyflav-2-en-3-ol 3-O-glucoside, a new biosynthetic precursor of cyanidin 3-O-glucoside in the seed coat of black soybean, Glycine max

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kumi Yoshida ◽  
Yada Teppabut ◽  
Reo Sawaguchi ◽  
Yuhsuke Nakane ◽  
Emi Hayashi ◽  
...  

Abstract The seed coat of mature black soybean, Glycine max, accumulates a high amount of cyanidin 3-O-glucoside (Cy3G), which is the most abundant anthocyanin in nature. In the pod, it takes two months for the seed coat color change from green to black. However, immature green beans rapidly adopt a black color within one day when the shell is removed. We analyzed the components involved in the color change of the seed coat and detected a new precursor of Cy3G, namely 5,7,3ʹ,4ʹ-tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2F3G). Through quantitative analysis using purified and synthetic standard compounds, it was clarified that during this rapid color change, an increase in the Cy3G content was observed along with the corresponding decrease in the 2F3G content. Chemical conversion from 2F3G to Cy3G at pH 5 with air and ferrous ion was observed. Our findings allowed us to propose a new biosynthetic pathway of Cy3G via a colorless glucosylated compound, 2F3G, which was oxidized to give Cy3G.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10770
Author(s):  
Yanjing Ren ◽  
Ning Zhang ◽  
Ru Li ◽  
Xiaomin Ma ◽  
Lugang Zhang

Background Seed coat color is an important horticultural trait in Brassica crops, which is divided into two categories: brown/black and yellow. Seeds with yellow seed coat color have higher oil quality, higher protein content and lower fiber content. Yellow seed coat color is therefore considered a desirable trait in hybrid breeding of Brassica rapa, Brassica juncea and Brassica napus. Methods Comprehensive analysis of the abundance transcripts for seed coat color at three development stages by RNA-sequencing (RNA-seq) and corresponding flavonoids compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were carried out in B. rapa. Results We identified 41,286 unigenes with 4,989 differentially expressed genes between brown seeds (B147) and yellow seeds (B80) at the same development stage. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 19 unigenes associated with the phenylpropanoid, flavonoid, flavone and flavonol biosynthetic pathways as involved in seed coat color formation. Interestingly, expression levels of early biosynthetic genes (BrCHS, BrCHI, BrF3H, BrF3’H and BrFLS) in the flavonoid biosynthetic pathway were down-regulated while late biosynthetic genes (BrDFR, BrLDOX and BrBAN) were hardly or not expressed in seeds of B80. At the same time, BrTT8 and BrMYB5 were down-regulated in B80. Results of LC-MS also showed that epicatechin was not detected in seeds of B80. We validated the accuracy of our RNA-seq data by RT-qPCR of nine critical genes. Epicatechin was not detected in seeds of B80 by LC-MS/MS. Conclusions The expression levels of flavonoid biosynthetic pathway genes and the relative content of flavonoid biosynthetic pathway metabolites clearly explained yellow seed color formation in B. rapa. This study provides a foundation for further research on the molecular mechanism of seed coat color formation.


2020 ◽  
Vol 11 (9) ◽  
pp. 7321-7339 ◽  
Author(s):  
Yoko Yamashita ◽  
Hiroyuki Sakakibara ◽  
Toshiya Toda ◽  
Hitoshi Ashida

Black soybean (Glycine max L.), a cultivar containing abundant polyphenols in its seed coat such as anthocyanins and flavan-3-ols, has been reported to possess various health benefits toward lifestyle diseases.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Sang Woo Choi ◽  
Jae Eun Kang ◽  
Seong Kyeong Lee ◽  
Sarath Ly ◽  
Jong Il Chung

Anthocyanins from the black soybean seed coat are known to have many pharmaceutical effects. However, black soybean seed contains antinutritional factors such as lipoxygenase, Kunitz trypsin inhibitor (KTI), lectin, and stachyose. The genetic removal of these components will improve the nutritional value of black soybean seed. The objective of this research was to breed a soybean strain with the black seed coat color, green cotyledon color, and tetra recessive allele (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-rs2/rs2) for lipoxygenase, KTI, lectin, and stachyose components. Eight parents were used to breed the tetra null strain. Analysis of lipoxygenase, KTI, lectin, and stachyose components in mature seeds was conducted by SDS-PAGE, Western blot, and HPLC. The soybean line with the black seed coat color, the green cotyledon color, a large seed size, and tetra recessive alleles has purple flowers, a determinate growth habit, and brown pods at maturity. The stem height of the breeding line was 52.3 cm. The 100-seed weight of the breeding line was 35.2 g and the yield (Ton/ha) was 2.50. The stachyose content of the breeding line was 3.30 g/kg. This is the first soybean strain with the black seed coat color, the green cotyledon color, a large seed size, and tetra null alleles (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-rs2/rs2, low content of stachyose, free of lipoxygenase, KTI, and lectin proteins).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Paulina Calderon Flores ◽  
Jin Seok Yoon ◽  
Dae Yeon Kim ◽  
Yong Weon Seo

Abstract Background Flavonoids can protect plants against extreme temperatures and ROS due to their antioxidant activities. We found that deep-purple seed coat color was controlled by two gene interaction (12:3:1) from the cross between yellow and deep-purple seed coat colored inbreds. F2:3 seeds were grouped in 3 by seed coat color and germinated under chilling (4 °C) and non-acclimated conditions (18 °C) for a week, followed by normal conditions (18 °C) for three weeks and a subsequent chilling stress (4 °C) induction. We analyzed mean daily germination in each group. Additionally, to study the acclimation in relationship to the different seed coat colors on the germination ability and seedling performances under the cold temperatures, we measured the chlorophyll content, ROS scavenging activity, and expression levels of genes involved in ROS scavenging, flavonoid biosynthetic pathway, and cold response in seedlings. Results The results of seed color segregation between yellow and deep purple suggested a two-gene model. In the germination study, normal environmental conditions induced the germination of yellow-seed, while under chilling conditions, the germination ratio of deep purple-seed was higher than that of yellow-colored seeds. We also found that the darker seed coat colors were highly responsive to cold acclimation based on the ROS scavenging enzymes activity and gene expression of ROS scavenging enzymes, flavonoid biosynthetic pathway and cold responsive genes. Conclusions We suggest that deep purple colored seed might be in a state of innate pre-acquired stress response state under normal conditions to counteract stresses in a more effective way. Whereas, after the acclimation, another stress should enhance the cold genes expression response, which might result in a more efficient chilling stress response in deep purple seed seedlings. Low temperature has a large impact on the yield of crops. Thus, understanding the benefit of seed coat color response to chilling stress and the identification of limiting factors are useful for developing breeding strategies in order to improve the yield of wheat under chilling stress.


2020 ◽  
Vol 72 ◽  
pp. 104054 ◽  
Author(s):  
Wataru Tanaka ◽  
Hiroki Matsuyama ◽  
Daigo Yokoyama ◽  
Yoko Yamashita ◽  
Hitoshi Ashida ◽  
...  

Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


Sign in / Sign up

Export Citation Format

Share Document