scholarly journals InP/ZnS quantum dots doped blue phase liquid crystal with wide temperature range and low driving voltage

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiayue Tang ◽  
Fashun Liu ◽  
Mengli Lu ◽  
Dongyu Zhao

Abstract Blue-phase liquid crystals (BPLCs) are regarded as potential materials for the exploitation of next-generation optical devices due to the rapid response, wide viewing angle, and simple industrial production procedures. However, practical application of traditional BPLCs is limited by their narrow temperature range and high driving voltage. Herein, we demonstrated that doping of chiral molecular isosorbide hexyloxybenzoate (R811) into BPLCs is able to increase the temperature range. More importantly, addition of InP/ZnS quantum dots (QDs) with oleylamine surface groups could also effectively broaden the temperature range of the BPLCs further while decreasing the driving voltage, which is attributed to the quantum dot trapped by BPLCs lattice defect that reduces its free energy. Since the trapped quantum dot subsequently forms a local electric field under electric field, the effective electric field of the surrounding liquid crystal molecules is enhanced and the rotation of the liquid crystal molecules is accelerated. Specially, the temperature range is widened by 1.4 °C, and the driving voltage is reduced by 57%, under the optimal concentration of R811 and lnP/ZnS QDs. The accomplishment we proposed in this work is a prospective optimization which makes the practical application of blue phase liquid crystals one step closer.

2018 ◽  
Vol 10 (4) ◽  
pp. 100 ◽  
Author(s):  
Marzena Maria Sala-Tefelska ◽  
Kamil Orzechowski ◽  
Filip A. Sala ◽  
Tomasz R. Woliński ◽  
Olga Strzeżysz ◽  
...  

In this paper, the influence of homeotropic and homogeneous orienting layers is presented in a cell filled with chiral nematic liquid crystals stabilized in a blue phase. The change of selective Bragg reflection from red to blue light was observed for homogeneous layers in rectangular geometries. The growth of blue phase crystals domains in a glass cell as well an influence of temperature and the electric field on such a structure, are also presented. Full Text: PDF ReferencesF. Reinitzer, Beitrage zur Kenntniss des Cholestherins, Monatsh Chem. 9, 421-441, (1888). CrossRef J. Yan, M. Jiao, L. Rao, and S.-T. Wu, "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450-11455 (2010) CrossRef Y. Chen, D. Xu, S.-T. Wu, S.-i. Yamamoto, Y. Haseba, "A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 102, 141116 (2013) CrossRef Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, "Optimized blue-phase liquid crystal for field-sequential-color displays", Opt. Mater. Express 7, 641-650 (2017) CrossRef V. Sridurai, M. Mathews, C. V. Yelamaggad, G. G. Nair, "Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror", ACS Appl. Mater. Interfaces, 9 (45), 39569-39575 (2017) CrossRef E. Oton, E. Netter, T. Nakano, Y. D.-Katayama, F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation", Sci. Rep. vol.7, 44575 (2017) CrossRef Q. Liu, D. Luo, X. Zhang, S. Li, Z. Tian, "Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band", Liq. Cryst., Vol. 44, No. 2, pp. 348-354 (2017) CrossRef Y. Li, Y. Liu, Q. Li, S.-T. Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film", Appl. Opt., Vol. 51, No. 14, pp. 2568-2572 (2012) CrossRef M. M. Sala-Tefelska, K. Orzechowski M. Sierakowski, A. Siarkowska, T.R. Woliński, O. Strzeżysz, P. Kula, "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215, (2018) CrossRef H. Claus, O. Willekens, O. Chojnowska, R. Dąbrowski, J. Beeckman, K. Neyts, "Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation", Liq. Cryst. 43 (5), 688-693, (2016) CrossRef M. Takahashi, T. Ohkawa, H. Yoshida, J. Fukuda, H. Kikuchi, M. Ozaki, "Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces", J. Phys. D: Appl. Phys. 51 (10), 104003 (2018) CrossRef P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, H. De Smet, "On the effect of alignment layers on blue phase liquid crystals", Appl. Phys. Lett. 106, 101105 (2015) CrossRef K. Orzechowski, M.W. Sierakowski, M. Sala-Tefelska, P. Joshi, T.R. Woliński, H.D. Smet, "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017) CrossRef P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, Y.-H. Lin, "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals", pt. Mater. Express 6, 1003-1010 (2016) CrossRef CrossRef


2017 ◽  
Vol 9 (2) ◽  
pp. 54 ◽  
Author(s):  
Kamil Orzechowski ◽  
Marek Wojciech Sierakowski ◽  
Marzena Sala-Tefelska ◽  
Tomasz Ryszard Woliński ◽  
Olga Strzeżysz ◽  
...  

In this work an alternative method for refractive index measurement of blue phase liquid crystal in the Kerr effect has been described. The proposed wedge method uses simple goniometric setup, allowing for direct index measurements for any wavelengths and index values. This is significant advantage comparing to other methods, usually having limitations of the measurement range as well as necessity complicated calculation to obtain refractive indices values. The results are reliable and agree well with the subject literature. Full Text: PDF ReferencesW. Cao et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mater. 1, 111-113 (2002). CrossRef S. Meiboom, M. Sammon, W.F. Brinkman, "Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals", Phys. Rev. A. 27, 438 (1983). CrossRef S. Tanaka et al., "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy", Sci. Rep. 5, 16180 (2015). CrossRef Y. Li and S.-T. Wu, "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19(9), 8045-8050 (2011). CrossRef N. Rong et al., "Polymer-Stabilized Blue-Phase Liquid Crystal Fresnel Lens Cured With Patterned Light Using a Spatial Light Modulator", J. of Disp. Technol. 12(10), 1008-1012 (2016). CrossRef J.-D. Lin et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Opt. Express 22(24), 29479-29492 (2014). CrossRef P. Joshi et al., "Tunable light beam steering device using polymer stabilized blue phase liquid crystals", Photon. Lett. Poland 9(1), 11-13 (2017). CrossRef Ch.-W. Chen et al., "Temperature dependence of refractive index in blue phase liquid crystals", Opt. Mater. Express 3(5), 527-532 (2013). CrossRef Y.-H. Lin et al., "Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements", J. Appl. Phys. 109, 104503 (2011). CrossRef J. Yan et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18(11), 11450-11455 (2010). CrossRef K.A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Photon. Lett. Poland 8(2), 51-53 (2016). CrossRef O. Chojnowska et al., "Electro-optical properties of photochemically stable polymer-stabilized blue-phase material", J. Appl. Phys. 116, 213505 (2014). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef M. Chen et al., "Electrically assisting crystal growth of blue phase liquid crystals", Opt. Mater. Express 4(5), 953-959 (2014). CrossRef J. Kerr, Philos. Mag. 50, 337 (1875).


2019 ◽  
Vol 46 (7) ◽  
pp. 1024-1034 ◽  
Author(s):  
Yong-Bo Yu ◽  
Wan-Li He ◽  
Zi-Mo Jiang ◽  
Zhao-Feng Yu ◽  
Lei Ren ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Bing-Yau Huang ◽  
Shuan-Yu Huang ◽  
Chia-Hsien Chuang ◽  
Chie-Tong Kuo

This paper proposes an effective approach to fabricate a blue phase liquid crystal (BPLC) microlens array based on a photoconductive film. Owing to the characteristics of photo-induced conducting polymer polyvinylcarbazole (PVK), in which conductivity depends on the irradiation of UV light, a progressive mask resulting in the variation of conductivity is adopted to produce the gradient distribution of the electric field. The reorientations of liquid crystals according to the gradient distribution of the electric field induce the variation of the refractive index. Thus, the incident light experiences the gradient distribution of the refractive index and results in the focusing phenomenon. The study investigates the dependence of lens performance on UV exposure time, the focal length of the lens, and focusing intensities with various incident polarizations. The BPLC microlens array exhibits advantages such as electrically tunability, polarization independence, and fast response time.


2013 ◽  
Vol 102 (17) ◽  
pp. 171110 ◽  
Author(s):  
Yuan Chen ◽  
Shin-Tson Wu

2017 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Jose Francisco Algorri ◽  
Virginia Urruchi ◽  
Noureddine Bennis ◽  
Jose Manuel Sanchez-Pena

Nematic liquid crystal (LC)-based beam steering has been reported for wide applications. However, for conventional nematic LC beam steering the thickness is of several microns in order to have a wider deflection angle. The response time is relatively slow and the diffraction efficiency is low. In this work, novel beam steering based on polymer stabilized blue phase liquid crystal (PS-BPLC) has been designed and theoretically analyzed. This special mesophase of the chiral doped nematic LC has several advantageous characteristics, for example no need for alignment layers, microsecond response time and an isotropic voltage-off state. The results reveal control over phase retardation. The direction of the steered beam can be tuned by voltage. Depending on voltage configuration, either diffractive beam steering (0.5deg deviation for 1st order) or a tunable continuous phase (tunable deviation of 0.002deg) can be obtained. In the first case, the deflection angle could be tuned by stacks of samples. The second option has the same phase shift for the TE and TM modes so unpolarized light could be used. Full Text: PDF ReferencesF. Feng, I. White, T. Wilkinson, "Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM", J. Lightwave Technol. 31, 2001 (2013). CrossRef E. Oton, J. Perez-Fernandez, D. Lopez-Molina, X. Quintana, J.M. Oton, M.A. Geday, "Reliability of Liquid Crystals in Space Photonics", IEEE Photonics Journal 7, 1 (2015). CrossRef J. Stockley, S. Serati, "Multi-access laser terminal using liquid crystal beam steering", IEEE in Aerospace Conference, 1972 (2005). CrossRef D. Zografopoulos and E. Kriezis, "Switchable beam steering with zenithal bistable liquid-crystal blazed gratings", Opt. Lett. 39, 5842 (2014). CrossRef Benedikt Scherger, et al., "Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device", J. Infrared. Millim. Terahertz Waves 33, 1117 (2012). CrossRef M.A. Geday, X. Quintana, E. Otón, B. Cerrolaza, D. Lopez, F. Garcia de Quiro, I. Manolis, A. Short, Proc. ICSO, Rhodes, Greece, pp. 1-4 (2010). CrossRef Y. Chen, S.-T. Wu, "The outlook for blue-phase LCDs", Proc. SPIE 9005, Advances in Display Technologies IV, 900508 (2014). CrossRef G.D. Love, A.F. Naumov, "Modal liquid crystal lenses", Liq. Cryst. Today 10, 1 (2000). CrossRef V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, M.A. Geday, X. Quintana, N. Bennis, "Lenticular Arrays Based on Liquid Crystals", Opto-Electron. Rev. 20, 38 (2012). CrossRef J.F. Algorri, G. Love, and V. Urruchi, "Modal liquid crystal array of optical elements", Opt. Express 21, 24809 (2013). CrossRef J.F. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, "Modal liquid crystal microaxicon array", Opt. Lett. 39, 3476 (2014). CrossRef J.F. Algorri, V. Urruchi, B. Garcia-Camara, J.M. Sánchez-Pena, "Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate", IEEE Elect. Dev. Lett. 35, 856 (2014). CrossRef D. Xu, Y. Chen, Y. Liu, S. Wu, "Refraction effect in an in-plane-switching blue phase liquid crystal cell", Opt. Express 21, 24721 (2013). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94 101104 (2009). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef X. Wang, D. Wilson, R. Muller, P. Maker, D. Psaltis, "Liquid-crystal blazed-grating beam deflector, Appl. Opt. 39, 6545 (2000). CrossRef


Sign in / Sign up

Export Citation Format

Share Document