scholarly journals Electric field-induced monodomain blue phase liquid crystals

2013 ◽  
Vol 102 (17) ◽  
pp. 171110 ◽  
Author(s):  
Yuan Chen ◽  
Shin-Tson Wu
2018 ◽  
Vol 10 (4) ◽  
pp. 100 ◽  
Author(s):  
Marzena Maria Sala-Tefelska ◽  
Kamil Orzechowski ◽  
Filip A. Sala ◽  
Tomasz R. Woliński ◽  
Olga Strzeżysz ◽  
...  

In this paper, the influence of homeotropic and homogeneous orienting layers is presented in a cell filled with chiral nematic liquid crystals stabilized in a blue phase. The change of selective Bragg reflection from red to blue light was observed for homogeneous layers in rectangular geometries. The growth of blue phase crystals domains in a glass cell as well an influence of temperature and the electric field on such a structure, are also presented. Full Text: PDF ReferencesF. Reinitzer, Beitrage zur Kenntniss des Cholestherins, Monatsh Chem. 9, 421-441, (1888). CrossRef J. Yan, M. Jiao, L. Rao, and S.-T. Wu, "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450-11455 (2010) CrossRef Y. Chen, D. Xu, S.-T. Wu, S.-i. Yamamoto, Y. Haseba, "A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 102, 141116 (2013) CrossRef Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, "Optimized blue-phase liquid crystal for field-sequential-color displays", Opt. Mater. Express 7, 641-650 (2017) CrossRef V. Sridurai, M. Mathews, C. V. Yelamaggad, G. G. Nair, "Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror", ACS Appl. Mater. Interfaces, 9 (45), 39569-39575 (2017) CrossRef E. Oton, E. Netter, T. Nakano, Y. D.-Katayama, F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation", Sci. Rep. vol.7, 44575 (2017) CrossRef Q. Liu, D. Luo, X. Zhang, S. Li, Z. Tian, "Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band", Liq. Cryst., Vol. 44, No. 2, pp. 348-354 (2017) CrossRef Y. Li, Y. Liu, Q. Li, S.-T. Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film", Appl. Opt., Vol. 51, No. 14, pp. 2568-2572 (2012) CrossRef M. M. Sala-Tefelska, K. Orzechowski M. Sierakowski, A. Siarkowska, T.R. Woliński, O. Strzeżysz, P. Kula, "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215, (2018) CrossRef H. Claus, O. Willekens, O. Chojnowska, R. Dąbrowski, J. Beeckman, K. Neyts, "Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation", Liq. Cryst. 43 (5), 688-693, (2016) CrossRef M. Takahashi, T. Ohkawa, H. Yoshida, J. Fukuda, H. Kikuchi, M. Ozaki, "Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces", J. Phys. D: Appl. Phys. 51 (10), 104003 (2018) CrossRef P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, H. De Smet, "On the effect of alignment layers on blue phase liquid crystals", Appl. Phys. Lett. 106, 101105 (2015) CrossRef K. Orzechowski, M.W. Sierakowski, M. Sala-Tefelska, P. Joshi, T.R. Woliński, H.D. Smet, "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017) CrossRef P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, Y.-H. Lin, "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals", pt. Mater. Express 6, 1003-1010 (2016) CrossRef CrossRef


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiayue Tang ◽  
Fashun Liu ◽  
Mengli Lu ◽  
Dongyu Zhao

Abstract Blue-phase liquid crystals (BPLCs) are regarded as potential materials for the exploitation of next-generation optical devices due to the rapid response, wide viewing angle, and simple industrial production procedures. However, practical application of traditional BPLCs is limited by their narrow temperature range and high driving voltage. Herein, we demonstrated that doping of chiral molecular isosorbide hexyloxybenzoate (R811) into BPLCs is able to increase the temperature range. More importantly, addition of InP/ZnS quantum dots (QDs) with oleylamine surface groups could also effectively broaden the temperature range of the BPLCs further while decreasing the driving voltage, which is attributed to the quantum dot trapped by BPLCs lattice defect that reduces its free energy. Since the trapped quantum dot subsequently forms a local electric field under electric field, the effective electric field of the surrounding liquid crystal molecules is enhanced and the rotation of the liquid crystal molecules is accelerated. Specially, the temperature range is widened by 1.4 °C, and the driving voltage is reduced by 57%, under the optimal concentration of R811 and lnP/ZnS QDs. The accomplishment we proposed in this work is a prospective optimization which makes the practical application of blue phase liquid crystals one step closer.


2017 ◽  
Vol 9 (2) ◽  
pp. 54 ◽  
Author(s):  
Kamil Orzechowski ◽  
Marek Wojciech Sierakowski ◽  
Marzena Sala-Tefelska ◽  
Tomasz Ryszard Woliński ◽  
Olga Strzeżysz ◽  
...  

In this work an alternative method for refractive index measurement of blue phase liquid crystal in the Kerr effect has been described. The proposed wedge method uses simple goniometric setup, allowing for direct index measurements for any wavelengths and index values. This is significant advantage comparing to other methods, usually having limitations of the measurement range as well as necessity complicated calculation to obtain refractive indices values. The results are reliable and agree well with the subject literature. Full Text: PDF ReferencesW. Cao et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mater. 1, 111-113 (2002). CrossRef S. Meiboom, M. Sammon, W.F. Brinkman, "Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals", Phys. Rev. A. 27, 438 (1983). CrossRef S. Tanaka et al., "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy", Sci. Rep. 5, 16180 (2015). CrossRef Y. Li and S.-T. Wu, "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19(9), 8045-8050 (2011). CrossRef N. Rong et al., "Polymer-Stabilized Blue-Phase Liquid Crystal Fresnel Lens Cured With Patterned Light Using a Spatial Light Modulator", J. of Disp. Technol. 12(10), 1008-1012 (2016). CrossRef J.-D. Lin et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Opt. Express 22(24), 29479-29492 (2014). CrossRef P. Joshi et al., "Tunable light beam steering device using polymer stabilized blue phase liquid crystals", Photon. Lett. Poland 9(1), 11-13 (2017). CrossRef Ch.-W. Chen et al., "Temperature dependence of refractive index in blue phase liquid crystals", Opt. Mater. Express 3(5), 527-532 (2013). CrossRef Y.-H. Lin et al., "Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements", J. Appl. Phys. 109, 104503 (2011). CrossRef J. Yan et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18(11), 11450-11455 (2010). CrossRef K.A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Photon. Lett. Poland 8(2), 51-53 (2016). CrossRef O. Chojnowska et al., "Electro-optical properties of photochemically stable polymer-stabilized blue-phase material", J. Appl. Phys. 116, 213505 (2014). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef M. Chen et al., "Electrically assisting crystal growth of blue phase liquid crystals", Opt. Mater. Express 4(5), 953-959 (2014). CrossRef J. Kerr, Philos. Mag. 50, 337 (1875).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Liu ◽  
Wenzhe Liu ◽  
Bo Guan ◽  
Bo Wang ◽  
Lei Shi ◽  
...  

AbstractIn a narrow temperature window in going from the isotropic to highly chiral orders, cholesteric liquid crystals exhibit so-called blue phases, consisting of different morphologies of long, space-filling double twisted cylinders. Those of cubic spatial symmetry have attracted considerable attention in recent years as templates for soft photonic materials. The latter often requires the creation of monodomains of predefined orientation and size, but their engineering is complicated by a lack of comprehensive understanding of how blue phases nucleate and transform into each other at a submicrometer length scale. In this work, we accomplish this by intercepting nucleation processes at intermediate stages with fast cross-linking of a stabilizing polymer matrix. We reveal using transmission electron microscopy, synchrotron small-angle X-ray diffraction, and angle-resolved microspectroscopy that the grid of double-twisted cylinders undergoes highly coordinated, diffusionless transformations. In light of our findings, the implementation of several applications is discussed, such as temperature-switchable QR codes, micro-area lasing, and fabrication of blue phase liquid crystals with large domain sizes.


2021 ◽  
pp. 1-11
Author(s):  
Ying Shi ◽  
WanLi He ◽  
YaQian Zhang ◽  
YongFeng Cui ◽  
Lei Zhang ◽  
...  

2021 ◽  
Author(s):  
Iam-Choon Khoo ◽  
Chun-Wei Chen ◽  
Tsung-Hsien Lin

2018 ◽  
Vol 51 (18) ◽  
pp. 185103 ◽  
Author(s):  
Ramesh Manda ◽  
Srinivas Pagidi ◽  
Surjya Sarathi Bhattacharya ◽  
Hyesun Yoo ◽  
Arun Kumar T ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document