scholarly journals Lithium containing layered high entropy oxide structures

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Junbo Wang ◽  
Yanyan Cui ◽  
Qingsong Wang ◽  
Kai Wang ◽  
Xiaohui Huang ◽  
...  

Abstract Layered Delafossite-type Lix(M1M2M3M4M5…Mn)O2 materials, a new class of high-entropy oxides, were synthesized by nebulized spray pyrolysis and subsequent high-temperature annealing. Various metal species (M = Ni, Co, Mn, Al, Fe, Zn, Cr, Ti, Zr, Cu) could be incorporated into this structure type, and in most cases, single-phase oxides were obtained. Delafossite structures are well known and the related materials are used in different fields of application, especially in electrochemical energy storage (e.g., LiNixCoyMnzO2 [NCM]). The transfer of the high-entropy concept to this type of materials and the successful structural replication enabled the preparation of novel compounds with unprecedented properties. Here, we report on the characterization of a series of Delafossite-type high-entropy oxides by means of TEM, SEM, XPS, ICP-OES, Mössbauer spectroscopy, XRD including Rietveld refinement analysis, SAED and STEM mapping and discuss about the role of entropy stabilization. Our experimental data indicate the formation of uniform solid-solution structures with some Li/M mixing.

2020 ◽  
Author(s):  
Junbo Wang ◽  
Yanyan Cui ◽  
Qingsong Wang ◽  
Kai Wang ◽  
Xiaohui Wang ◽  
...  

<p>Layered Li<i><sub>x</sub></i>MO<sub>2</sub> materials, a new class of high-entropy oxides, have been synthesized by nebulized spray pyrolysis. Specifically, the lattice structure of Li(Ni<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>)O<sub>2</sub> (NCM111) cathode material has been replicated successfully while increasing the number of cations in equimolar proportions, thereby allowing transition to high-entropy oxide materials.</p>


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2020 ◽  
Vol 49 (21) ◽  
pp. 7123-7132 ◽  
Author(s):  
Nandhini J. Usharani ◽  
Rajat Shringi ◽  
Harshil Sanghavi ◽  
S. Subramanian ◽  
S. S. Bhattacharya

Presence of multivalency/non-stoichiometry to accommodate a different-sized cation and maintaining electroneutrality were identified as the critical criteria for single-phase formation in multicomponent/high entropy systems.


2016 ◽  
Vol 21 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Mukesh Kumar Atal ◽  
Ajay Saini ◽  
Ram Gopal ◽  
Meena Nagar ◽  
Veena Dhayal

Author(s):  
Diqiang Liu ◽  
Aijun Zhang ◽  
Jiangang Jia ◽  
Junyan Zhang ◽  
Junhu Meng

1988 ◽  
Vol 106 (2) ◽  
pp. 269-277 ◽  
Author(s):  
CC Cain ◽  
RF Murphy

To investigate the role of acidification in cell proliferation, several cell lines resistant to chloroquine were isolated with the expectation that some would express altered endocytic acidification. The preliminary characterization of one of these lines, CHL60-64, is described. In contrast to endocytic mutants described previously, the initial phase of endocytic acidification, as measured by transferrin acidification, is normal in this cell line. However, a difference in subsequent endocytic acidification was observed in CHL60-64. In the parental cells, internalized dextran was fully acidified to approximately pH 5.5 within 1 h. In CHL60-64, the pH in the endocytic compartment was only 6.1 after 1 h and remained as high as 5.8 for at least 4 h. After an 8-h incubation, the pH decreased to 5.5, indicating that the second phase of acidification is only slowed in CHL60-64, and not blocked. Consistent with this retarded acidification, ATP-dependent acidification in vitro (as measured by acridine orange accumulation) was reduced in both the lysosomal fraction and the endosomal fraction isolated from CHL60-64. A decrease in the in vivo rate of acridine orange accumulation after perturbation with amine was also observed. In addition to amine resistance and defective acidification, CHL60-64 was found to be resistant to vacuolation in the presence of chloroquine and ammonium chloride, and was resistant to ouabain. Further studies on this new class of endocytosis mutant, in combination with existing mutants, should help to clarify the mechanisms responsible for the regulation of endocytic acidification.


2020 ◽  
Author(s):  
Junbo Wang ◽  
Yanyan Cui ◽  
Qingsong Wang ◽  
Kai Wang ◽  
Xiaohui Wang ◽  
...  

<p>Layered Li<i><sub>x</sub></i>MO<sub>2</sub> materials, a new class of high-entropy oxides, have been synthesized by nebulized spray pyrolysis. Specifically, the lattice structure of Li(Ni<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>)O<sub>2</sub> (NCM111) cathode material has been replicated successfully while increasing the number of cations in equimolar proportions, thereby allowing transition to high-entropy oxide materials.</p>


2014 ◽  
Vol 70 (a1) ◽  
pp. C943-C943
Author(s):  
Roksolana Kozak ◽  
Walter Steurer

High-entropy alloys (HEAs) are a new class of alloys designed with the approach of maximization of configurational mixing entropy by increasing the number of constituents [1,2]. Alloys produced in such a way are reported for a variety of promising properties (high hardness and strength, wear resistance, magnetism etc.) [3]. However, origin of these properties (microstructure, phase content, element composition, thermal history) is not always clear. High mixing entropy in HEAs favours the formation of single-phase substitutional solid solutions at elevated temperatures with approximately equiatomic compositions and simple average crystal structures of either the cF4-Cu (fcc) or the cI2-W (bcc). Nevertheless, only a few element combinations produce truly single-phase materials. In order to search for new HEAs compositions samples in the systems Cr-Fe-Co-Ni-Al and Cr-Fe-Co-Ni-Mn were synthesized by arc melting and homogenized in tantalum ampoules at 1100 and 1300 °C for 2 weeks. DTA, X-ray diffraction and electron microscopy measurements were performed. Only samples with small Al content (~ 5 at.%) showed the single-phase microstructure. Their local atomic structure is under investigation.


2021 ◽  
Author(s):  
Martina Fracchia ◽  
Mauro Coduri ◽  
Maela Manzoli ◽  
Paolo Ghigna ◽  
Umberto Anselmi-Tamburini

We question the conclusions reported in the paper "Entropy-stabilized Oxides, by C. Rost et al., by looking into the role of configurational entropy as the stabilization of the rock-salt cubic structure of the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (HEO) solid solution (SS). First, we demonstrate that configurational entropy can be reduced from 1.61R for HEO to 0.5R for a two-member SS, still obtaining a single-phase material if the molar fractions of ZnO and CuO are 0.2. These SSs behave identically as HEO regarding the reversible transformation between a multi- and single-phase states when temperatures are cycled between 800 and 1000 °C. Second, we demonstrate that the different SSs presenting a configurational entropy significantly lower than HEO, are less prone to the cubic to tetragonal structural distortion, suggesting that the configurational entropy has not the central role as stabilizing factor of the rock-salt structure.<br>


Sign in / Sign up

Export Citation Format

Share Document