scholarly journals Shear strength characteristics of a sand clay liner

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muawia Dafalla ◽  
Abdullah Shaker ◽  
Tamer Elkady ◽  
Abdullah Almajed ◽  
Mosleh Al-Shamrani

Abstract This study investigated shear strength behaviour of compacted sand–clay mixtures used as liners, with 10%, 20%, and 30% clay contents. A natural high-plasticity and highly expansive clay found in the eastern province of Saudi Arabia was used. A series of consolidated undrained triaxial tests and pore water pressure measurements of saturated samples with various clay contents and confining pressures was conducted using a computer-controlled Bishop and Wesley triaxial cell. The unit was equipped with pressure volume controllers and a pressure transducer for measuring sample volume changes and excess pore water pressure. The experimental test results indicate that clay content and confining pressure significantly affect stress strain response curves, pore water pressure generation curves, and steady-state shear strength. Sand–clay mixtures with clay content less than 10% showed a tendency toward contractive behaviour. The failure line slope increased in accordance with clay content increase. The deviator stress versus axial strain of saturated sand–clay mixtures indicated a hyperbolic trend. The stress ratio versus axial strain representation was more informative for the shear strength behaviour assessment. Clay content did not significantly affect critical-state friction angle. Scanning electron microscope images of the sand-clay mixtures with different clay contents are presented.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


2004 ◽  
Vol 41 (3) ◽  
pp. 421-436 ◽  
Author(s):  
Harianto Rahardjo ◽  
Ong Boo Heng ◽  
Leong Eng Choon

Rainfall-induced landslides in unsaturated residual soils can occur slowly under drained conditions or rapidly under undrained conditions. Consolidated drained (CD) and constant water content (CW) tests have been performed to simulate the stress paths followed by soil elements in a slope that fails under drained and undrained conditions. The study was carried out to investigate the shear strength characteristics of soils associated with rainfall-induced slope failures. The soil tested was residual soil from the Jurong sedimentary formation and was reconstituted using static compaction. The test results indicate that the shear strength of the compacted specimens obtained from the CW tests agrees well with the shear strength obtained from the CD tests for the specimens with initial matric suctions less than their air-entry values. The shear strength results from the CD and CW triaxial tests start to differ when the matric suction exceeds the air-entry value of the soil. The CD and CW triaxial tests also indicate that the compacted specimens behave as a normally consolidated soil at matric suctions below the air-entry value of the soil and as an overconsolidated soil at matric suctions above the air-entry value of the soil. Results of the CW triaxial tests show that the relationship between the response of pore-water pressure and the total volume change of the specimen is more complicated than that found in the saturated undrained triaxial tests. In other words, the change in pore-water pressure during shearing is not directly related to the overall volume change of the specimen.Key words: unsaturated soil, compacted soil, residual soil, consolidated drained triaxial test, constant water content triaxial test.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.


2018 ◽  
Vol 55 (12) ◽  
pp. 1756-1768
Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna

This paper presents results from a series of piping tests carried out on a selected range of granular filters under static and cyclic loading conditions. The mechanical response of filters subjected to cyclic loading could be characterized in three distinct phases; namely, (I) pre-shakedown, (II) post-shakedown, and (III) post-critical (i.e., the occurrence of internal erosion). All the permanent geomechanical changes such, as erosion, permeability variations, and axial strain developments, took place during phases I and III, while the specimen response remained purely elastic during phase II. The post-critical occurrence of erosion incurred significant settlement that may not be tolerable for high-speed railway substructures. The analysis revealed that a cyclic load would induce excess pore-water pressure, which, in corroboration with steady seepage forces and agitation due to dynamic loading, could then cause internal erosion of fines from the specimens. The resulting excess pore pressure is a direct function of the axial strain due to cyclic densification, as well as the loading frequency and reduction in permeability. A model based on strain energy is proposed to quantify the excess pore-water pressure, and subsequently validated using current and existing test results from published studies.


2019 ◽  
Vol 92 ◽  
pp. 08008
Author(s):  
Bozana Bacic ◽  
Ivo Herle

Time-consuming and complicated investigations of soil liquefaction in cyclic triaxial tests are the most common way of laboratory analysis of this phenomenon. Moreover, the necessary equipment for the performance of cyclic triaxial tests is very expensive. Much simpler method for laboratory testing of the soil liquefaction has been developed at the Institute of Geotechnical Engineering at the TU Dresden. This method takes into account the pore water pressure build-up during cyclic shearing within a short time period. During the test, the soil sample is subjected to horizontal cyclic loading and the generated pore water pressure is measured. In the first series of these experiments, a dependence of the pore water pressure buildup on the initial density of soil could be observed, as expected. When comparing different soils, it is shown that the tendency to liquefaction depends also on the granulometric properties (e.g. grain size distribution) of the soil. The aim of the further development is to establish a simple identification test for laboratory testing of the soil liquefaction.


2020 ◽  
Author(s):  
Gerd Gudehus

AbstractWhile Terzaghi justified his principle of effective stress for water-saturated soil empirically, it can be derived by means of the neutrality of the mineral with respect to changes of the pore water pressure $$p_w$$ p w . This principle works also with dilating shear bands arising beyond critical points of saturated grain fabrics, and with patterns of shear bands as relics of critical phenomena. The shear strength of over-consolidated clay is explained without effective cohesion, which results also from swelling up to decay, while rapid shearing of water-saturated clay can lead to a cavitation of pore water. The $$p_w$$ p w -neutrality is also confirmed by triaxial tests with sandstone samples, while Biot’s relation with a reduction factor for $$p_w$$ p w is contestable. An effective stress tensor is heuristically legitimate also for soil and rock with relics of critical phenomena, particularly for critical points with a Mohr–Coulomb condition. Therein, the $$p_w$$ p w -neutrality of the solid mineral determines the interaction of solid fabric and pore water, but numerical models are questionable due to fractal features.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


Sign in / Sign up

Export Citation Format

Share Document