PERFORMANCE ANALYSIS OF COPPER TIN SULFIDE, Cu2SnS3 (CTS) WITH VARIOUS BUFFER LAYERS BY USING SCAPS IN SOLAR CELLS

2016 ◽  
Vol 24 (06) ◽  
pp. 1750073 ◽  
Author(s):  
I. S. AMIRI ◽  
H. AHMAD ◽  
M. M. ARIANNEJAD ◽  
M. F. ISMAIL ◽  
K. THAMBIRATNAM ◽  
...  

This work examines the performance of the Cu2SnS3 (CTS) solar cells using the solar cell capacitance simulator (SCAPS) approach. The performance of the CTS solar cell was evaluated in terms of [Formula: see text], [Formula: see text], fill factor and efficiency. The structural parameter variation of CTS solar cell has been studied in terms of buffer and absorber layer thickness, bandgap, effect of temperature on total efficiency of the solar cell. Increasing the thickness of the CdS buffer layer decreases the efficiency of the simulated solar cell. A significant increase in the efficiency of the solar cell to 20.36% was obtained with a simulated buffer layer thickness to 10[Formula: see text]nm. In terms of the CTS absorber layer thickness, the efficiency of the solar cell increases by increasing the thickness of absorber layer. By setting the thickness of CTS to 4.0[Formula: see text][Formula: see text]m, the efficiency obtained is 20.36%. It is observed that an increase in the bandgap can enhance the efficiency of the solar cell. In the performed simulation, an 0.9[Formula: see text]eV bandgap resulted in a 11.58% cell efficiency and a 1.25[Formula: see text]eV bandgap resulted in 21.96% cell efficiency. In terms of temperature, the efficiency of 20.36% was obtained at 300[Formula: see text]K, and as the temperature increases, cell efficiency will decrease.

2021 ◽  
Vol 2128 (1) ◽  
pp. 012009
Author(s):  
Hassan Ismail Abdalmageed ◽  
Mostafa Fedawy ◽  
Moustafa H. Aly

Abstract This article uses computational models to evaluate the potential of copper-indium-gallium-diselenide (CIGS) thin film solar cells. The use of cadmium sulphide (CdS) renders the solar cell environmentally hazardous. A zinc sulphide (ZnS) that is non-toxic and has a large bandgap is studied as a potential replacement for cadmium sulphide in CIGS-based solar cells. The present research focuses on the impact of the CIGS-based solar cell bandgap absorber layer by increasing the absorber layer thickness (0.1-2 μm) using the solar cell simulator simulation tool SCAPS. The basic simulation produces 18.2 % efficiency with a CdS buffer layer, which is 9.95% better than the previously published work. The Simulated efficiency is 22.16% for the CIGS solar cell using ZnS. The simulation of solar cell characteristics of how the thickness of the absorber layer, the gallium grading (efficiency ranges up to 22.25 %) is demonstrated, showing the effect of buffer layer (ZnS) on the current of short-circuit density (JSC), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of the solar cell.


Author(s):  
Samer H. Zyoud ◽  
Ahed H. Zyoud ◽  
Naser M. Ahmed ◽  
Atef Abdekader

Cadmium telluride (CdTe), a metallic dichalcogenide material, has been utilized as an absorber layer for thin film-based solar cells with appropriate configurations, and the SCAPS-1D structures program has been used to evaluate the results. In both known and developing thin film photovoltaic systems, a CdS thin film buffer layer has been frequently employed as a traditional n-type heterojunction partner. In this study, numerical simulation was used to find a suitable non-toxic material for the buffer layer instead of CdS, among various types of buffer layers (ZnSe, ZnO, ZnS, and In2S3), and carrier concentrations for the absorber layer (NA) and buffer layer (ND) were varied to determine the optimal simulation parameters. carrier concentrations (NA from 2 x 1012 cm-3 to 2 x 1017 cm-3 and ND from 1 x 1016 cm-3 to 1 x 1022 ??−3) have been differed. The results showed that the CdS as buffer layer based CdTe absorber layer solar cell has the highest efficiency (?%) of 17.43%. Furthermore, high conversion efficiencies of 17.42% and 16.27% have been found for ZnSe and ZnO based buffer layers, respectively. As a result, ZnO and ZnSe are potential candidates for replacing the CdS buffer layer in thin-film solar cells. Here, the absorber (CdTe) and buffer (ZnSe) layers were chosen to improve the efficiency by finding the optimal density of the carrier concentration (acceptor and donor). The simulation findings above provide helpful recommendations for fabricating high-efficiency metal oxide-based solar cells in the lab.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mehran Minbashi ◽  
Arash Ghobadi ◽  
Elnaz Yazdani ◽  
Amirhossein Ahmadkhan Kordbacheh ◽  
Ali Hajjiah

AbstractThis study represents the investigation of earth-abundant and non-toxic CZTSSe absorber materials in kesterite solar cell by using the Finite Element Method (FEM) with (1) electrical, and (2) optical approaches. The simulated results have been validated with the experimental results to define guidelines for boosting the cell performance. For improving the cell efficiency, potential barrier variations in the front contact, and the effect of different lattice defects in the CZTSSe absorber layer have been examined. Controlling the defects and the secondary phases of absorber layer have significant influence on the cell performance improvement. Previous studies have demonstrated that, synthesis of CZTSSe:Na nanocrystals and controlling the S/(S + Se), Cu/(Zn + Sn), and Zn/Sn ratios (stoichiometry) have significant effects on the reduction of trap-assisted recombination (Shockley–Read–Hall recombination model). In this work, a screening-based approach has been employed to study the cell efficiency over a wide range of defect densities. Two categorized defect types including benign defects ($${N}_{t}<{10}^{16}$$ N t < 10 16 cm−3 , Nt defines trap density) and harmful defects $${(N}_{t}>{10}^{16}$$ ( N t > 10 16 cm−3) in the absorber bandgap in the CZTSSe solar cell, by analyzing their position changes with respect to the electron Fermi level (Efn) and the Valence Band Maximum positions have been identified. It is realized that, the harmful defects are the dominant reason for the low efficiency of the kesterite solar cells, therefore, reducing the number of harmful defects and also total defect densities lead to the power conversion efficiency record of 19.06%. This increment makes the CZTSSe solar cells as a promising candidate for industrial and commercial applications.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1454 ◽  
Author(s):  
Samer H. Zyoud ◽  
Ahed H. Zyoud ◽  
Naser M. Ahmed ◽  
Atef F. I. Abdelkader

Cadmium telluride (CdTe), a metallic dichalcogenide material, was utilized as an absorber layer for thin film–based solar cells with appropriate configurations and the SCAPS–1D structures program was used to evaluate the results. In both known and developing thin film photovoltaic systems, a CdS thin–film buffer layer is frequently employed as a traditional n–type heterojunction partner. In this study, numerical simulation was used to determine a suitable non–toxic material for the buffer layer that can be used instead of CdS, among various types of buffer layers (ZnSe, ZnO, ZnS and In2S3) and carrier concentrations for the absorber layer (NA) and buffer layer (ND) were varied to determine the optimal simulation parameters. Carrier concentrations (NA from 2 × 1012 cm−3 to 2 × 1017 cm−3 and ND from 1 × 1016 cm−3 to 1 × 1022 cm−3) differed. The results showed that the use of CdS as a buffer–layer–based CdTe absorber layer for solar cell had the highest efficiency (%) of 17.43%. Furthermore, high conversion efficiencies of 17.42% and 16.27% were for the ZnSe and ZnO-based buffer layers, respectively. As a result, ZnO and ZnSe are potential candidates for replacing the CdS buffer layer in thin–film solar cells. Here, the absorber (CdTe) and buffer (ZnSe) layers were chosen to improve the efficiency by finding the optimal density of the carrier concentration (acceptor and donor). The simulation findings above provide helpful recommendations for fabricating high–efficiency metal oxide–based solar cells in the lab.


2018 ◽  
Vol 51 (27) ◽  
pp. 275501 ◽  
Author(s):  
A Cantas ◽  
F Turkoglu ◽  
E Meric ◽  
F G Akca ◽  
M Ozdemir ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nasim Sahraei ◽  
Selvaraj Venkataraj ◽  
Premachandran Vayalakkara ◽  
Armin G. Aberle

One of the key issues of thin-film silicon solar cells is their limited optical absorptance due to the thin absorber layer and the low absorption coefficient for near-infrared wavelengths. Texturing of one or more interfaces in the layered structure of these cells is an important technique to scatter light and enhance the optical pathlength. This in turn enhances the optical absorption of the solar radiation in the absorber layer and improves the solar cell efficiency. In this paper we investigate the effects of textured glass superstrate surfaces on the optical absorptance of intrinsic a-Si:H films and a-Si:Hp-i-nthin-film solar cell precursors deposited onto them. The silicon-facing surface of the glass sheets was textured with the aluminium-induced glass texturing method (AIT method). Absorption in both intrinsic silicon films and solar cell precursor structures is found to increase strongly due to the textured glass superstrate. The increased absorption due to the AIT glass opens up the possibility to reduce the absorber layer thickness of a-Si:H solar cells.


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 419-427 ◽  
Author(s):  
P. Prabeesh ◽  
V.G. Sajeesh ◽  
I. Packia Selvam ◽  
M.S. Divya Bharati ◽  
G. Mohan Rao ◽  
...  

Compound semiconductor CZTSe is a popular absorber layer for thin film solar cells. Instead of single semiconductor buffer layer, a hybrid buffer layer is used with CZTSe absorber layer. To reduce further usage of toxic materials(CdS) and simultaneously to increase the solar cell efficiency, Ag doped buffer layer was proposed and a numerical studies were performed using SCAPS 1-D simulation programme. Also the thickness and the carrier density of the different layers in the solar cell were optimized to achieve the above goals. After the simulation process, the toxic materials usage was reduced by 62% and the efficiency was increased from 12.24% to 12.69%


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


Sign in / Sign up

Export Citation Format

Share Document