scholarly journals Desacetyl-α-MSH and α-MSH have sex specific interactions with diet to influence mouse gut morphology, metabolites and microbiota

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Sun ◽  
Tommi Vatanen ◽  
Thilini N. Jayasinghe ◽  
Elizabeth McKenzie ◽  
Rinki Murphy ◽  
...  

Abstract The melanocortin peptides have an important role in regulating body weight and appetite. Mice that lack the desacetyl-α-MSH and α-MSH peptides (Pomctm1/tm1) develop obesity. This effect is exacerbated by a high fat diet (HFD). However, development of obesity in female Pomctm1/tm1 mice during chronic HFD conditions is not fully accounted for by the increased energy intake. We hypothesized that the protection against chronic HFD-induced obesity imparted by MSH peptides in females is mediated by sex-specific alterations in the gut structure and gut microbiota. We determined that female WT mice had reduced jejunum villus length and increased crypt depth in response to chronic HFD. WT males and Pomctm1/tm1 mice lacked this adaptation to a chronic HFD. Both Pomctm1/tm1 genotype and chronic HFD were significantly associated with gut microbiota composition. Sex-specific associations between Pomctm1/tm1 genotype and gut microbiota were observed in the presence of a chronic HFD. Pomctm1/tm1 females had significantly reduced fecal acetate and propionate concentrations when compared to WT females. We conclude that MSH peptides influence jejunum villus length, crypt depth and the structure of the gut microbiota. These effects favor reduced nutrient absorption and occur in addition to the recognized roles of desacetyl-α-MSH and α-MSH peptides in appetite control.

2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2019 ◽  
Vol 10 (2) ◽  
pp. 775-785 ◽  
Author(s):  
Xiang Li ◽  
Huali Wang ◽  
Tianxin Wang ◽  
Fuping Zheng ◽  
Hao Wang ◽  
...  

Wood pulp-derived sterols (WS) supplementation ameliorated HFD-associated metabolic disorder; WS supplementation increased the amounts of fecal sterols excretion and SCFAs content; WS supplementation modulated gut microbiota composition.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2188 ◽  
Author(s):  
Ning-Ning Zhang ◽  
Wen-Hui Guo ◽  
Han Hu ◽  
A-Rong Zhou ◽  
Qing-Pei Liu ◽  
...  

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


2020 ◽  
Vol 11 (2) ◽  
pp. 1624-1634 ◽  
Author(s):  
Zhenxing Shi ◽  
Yingying Zhu ◽  
Cong Teng ◽  
Yang Yao ◽  
Guixing Ren ◽  
...  

α-Amylase inhibitors (α-AI) have great potential to treat obesity.


2018 ◽  
Vol 6 (20) ◽  
pp. e13881 ◽  
Author(s):  
Nina Brandt ◽  
Dorota Kotowska ◽  
Caroline M. Kristensen ◽  
Jesper Olesen ◽  
Ditte O. Lützhøft ◽  
...  

2018 ◽  
Vol 63 (2) ◽  
pp. 1800390 ◽  
Author(s):  
Pei‐Sheng Lee ◽  
Chia‐Yi Teng ◽  
Nagabhushanam Kalyanam ◽  
Chi‐Tang Ho ◽  
Min‐Hsiung Pan

2020 ◽  
Vol 11 (8) ◽  
pp. 6818-6833
Author(s):  
Wei-Ling Guo ◽  
Jian-Bin Guo ◽  
Bin-Yu Liu ◽  
Jin-Qiang Lu ◽  
Min Chen ◽  
...  

Ganoderic acid A from Ganoderma lucidum has the potential to prevent hyperlipidemia, modulates the composition of gut microbiota in hyperlipidemic mice, and significantly attenuates the liver metabolite profile in hyperlipidemic mice.


Sign in / Sign up

Export Citation Format

Share Document