scholarly journals Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hanuman S. Jat ◽  
Virender Kumar ◽  
Ashim Datta ◽  
Madhu Choudhary ◽  
Yadvinder-Singh ◽  
...  

Abstract In the western Indo-Gangetic plains, issues of deterioration in soil, water, and environment quality coupled with low profitability jeopardize the sustainability of the dominant rice–wheat (RW) system. To address these issues, crop diversification and conservation agriculture (CA)-based management hold considerable promise but the adoption of both approaches has been low, and additional evidence generation from a multi-criteria productivity and sustainability perspective is likely required to help drive the change. Compared to prevailing farmers’ practice (FP), results suggest that CA-based rice management increased profitability by 13% and energy use efficiency (EUE) by 21% while reducing irrigation by 19% and global warming potential (GWP) by 28%. By substituting CA-based maize for rice, similar mean profitability gains were realized (16%) but transformative improvements in irrigation (− 84%), EUE (+ 231%), and GWP (− 95%) were observed compared to FP. Inclusion of mungbean in the rotation (i.e. maize-wheat-mungbean) with CA-based management increased the system productivity, profitability, and EUE by 11, 25 and 103%, respectively while decreasing irrigation water use by 64% and GWP by 106% compared to FP. Despite considerable benefits from the CA-based maize-wheat system, adoption of maize is not widespread due to uneven market demand and assured price guarantees for rice.

Author(s):  
E. Sobhana ◽  
C. Swaminathan ◽  
P. Kannan ◽  
A. Gurusamy

Background: Conservation agriculture (CA), an agricultural production system with optimum inputs, high returns and sustainability while conserving environment is primarily required for command areas and rainfed uplands. CA helps to improve and conserve soil health through crop rotation, mulching, minimum field traffic and mechanical soil disturbance etc and conserve water to achieve economically and ecologically sustainable crop production. Methods: The field experiment was conducted for two years during 2019-21 to evaluate the influence of conservation agricultural practices on the system productivity, production efficiency and energy use under legume based cropping system in a command area. Treatments comprised of four cropping systems as Groundnut - foxtail millet (C1), Groundnut - barnyard millet (C2), Daincha - foxtail millet (C3) and Daincha - barn yard millet (C4) in main plots and foliar application of organics, 3% panchagavya, 1% PPFM and 0.1% humic acid formed subplots. Result: System productivity in terms of Groundnut equivalent yield (GEY) was significantly higher (8395 kg/ha) in the Groundnut - Barnyard millet cropping system with foliar application of PPFM 1% in CA system than that of conventional method. The production efficiency was maximum in Groundnut - barnyard millet system (34.41 kg/ha/day) and Groundnut - foxtail millet recorded the highest energy use efficiency (6.8%) which shows that maximum energy was effectively utilized under the system. Daincha - foxtail millet system had highest energy productivity of 0.91 kg M/J. Thus, the conservation tillage based Groundnut - barnyard millet system recorded more system productivity, highest resource use efficiency (both production and land use efficiency) and the highest energy use efficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1829
Author(s):  
Herminia Puerto ◽  
Miguel Mora ◽  
Bernat Roig-Merino ◽  
Ricardo Abadía-Sánchez ◽  
José María Cámara-Zapata ◽  
...  

Over the last three decades, a great investment effort has been made in the modernization of irrigation in the Valencian Community (Spain). The initial change from distribution networks to pressurized ones and the shift towards drip irrigation systems was followed by improvements in irrigation scheduling, based on agrometeorological data, soil water content sensors, and remote sensing. These improvements are considered adequate for increasing irrigation water use efficiency, but it is difficult to find systematic measurements to assess its impacts on irrigation adequacy along with irrigation productivity in fruit orchards. This work presents the results of a four year assessment of irrigation water and energy use efficiency along with water productivity of a recently established irrigation community in the province of Valencia (Spain). The study was carried out at the orchard level and focused on two fruit crops: persimmon and peach trees. Six irrigation performance indicators, relative water supply (RWS), relative irrigation supply (RIS), yield performance (Yp), global water productivity (WPoverall), output per unit irrigation water (OUI), and the percent of nitrogen fertilization obtained by irrigation water, were defined and calculated for years 2017 to 2020 in 104 persimmon and peach orchards. The results showed that most of the farmers irrigated below the crop water requirements, showing RWS and RIS values less than 1, and there was great variability among farmers, especially in WPoverall and OUI indicators.


2013 ◽  
Vol 142 ◽  
pp. 1-8 ◽  
Author(s):  
Vivak Kumar ◽  
Yashpal S. Saharawat ◽  
Mahesh K. Gathala ◽  
Arjun Singh Jat ◽  
Sanjay K. Singh ◽  
...  

2017 ◽  
Vol 55 (2) ◽  
pp. 339-357 ◽  
Author(s):  
PETER HOBBS ◽  
RAJ GUPTA ◽  
RAJ KUMAR JAT ◽  
R. K. MALIK

SUMMARYThis paper follows the progress made in India for research and farmer adoption of conservation agriculture (CA) since the publication of Erenstein (2012), who contested the idea that zero-till (ZT) establishment of wheat in rice–wheat systems could be further developed into full CA systems. Data presented in this paper show that research has successfully found solutions for both the wheat and rice phases of the rice–wheat systems of the Indo-Gangetic Plains (IGP) in the past 8 years. It shows that by finding solutions in both the rice and wheat phases, yields, water use efficiency and profits increased, while labour needs reduced. Indian scientists have also confirmed these benefits in participatory on-farm research in various locations, both east and west regions of the IGP. Farmers see for themselves through experimentation that they get higher yields with less cost and with more efficient use of inputs and water. A key factor has been the development of improved seed drills with the help of Indian private sector manufacturers of agricultural equipment. Indian scientists have also successfully conducted CA research on several other crops and in other regions besides the IGP. The paper shows that it is better to introduce parts of the CA management practices in a step-wise fashion first, rather than introducing the entire package at once since farmers first have to test and evaluate a new technology to understand how it benefits them personally before they will adopt it. The paper concludes that in the rice–wheat systems of South Asia, adoption of CA is indeed possible to achieve although it is still a work in progress. CA is a complex technology package and it takes time to overcome all of the contested issues mentioned in Erenstein (2012).


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1561
Author(s):  
Deepak Bijarniya ◽  
C. M. Parihar ◽  
R. K. Jat ◽  
Kailash Kalvania ◽  
S. K. Kakraliya ◽  
...  

The conventional tillage based rice-wheat system (RWS) in Indo-genetic plains (IGP) of South Asia is facing diverse challenges like increase in production cost and erratic climatic events. This results in stagnated crop productivity and declined farm profitability with increased emission of greenhouse gases. Therefore, 3-year multi-location farmer’s participatory research trial was conducted to assess the impact of crop establishment and residue management techniques on crop productivity, economic profitability and environmental footprints in RWS. The aim of this study was to analyze the effect of combinations of improved agronomic technologies compared to farmer’s practices (FP) on crop productivity, profitability, resource use efficiency and environmental footprints. The experiment had six scenarios that is, S1-Farmer’s practice; Conventional tillage (CT) without residue; S2-CT with residue, S3- Reduced tillage (RT) with residue + Recommended dose of fertilizer (RDF); S4-RT/zero tillage (ZT) with residue + RDF, S5-ZT with residue + RDF + green seeker + tensiometer + information & communication technology + crop insurance and S6- S5 + site specific nutrient management. Climate smart agriculture practices (CSAPs; mean of S4, S5 and S6) increase system productivity and farm profitability by 10.5% and 29.4% (on 3 yrs’ mean basis), whereas, improved farmers practices (mean of S2 and S3) resulted in only 3.2% and 5.3% increments compared to farmer’s practice (S1), respectively. On an average, CSAPs saved 39.3% of irrigation water and enhanced the irrigation and total water productivity by 53.9% and 18.4% than FP, respectively. In all the 3-years, CSAPs with high adaptive measures enhanced the energy-use-efficiency (EUE) and energy productivity (EP) by 43%–54% and 44%–61%, respectively than FP. In our study, global warming potential (GWP), GHG emission due to consumption energy and greenhouse gas intensity were recorded lower by 43%, 56% and 59% in Climate Smart Agriculture (CSA) with high adaptive measures than farmers practices (3652.7 kg CO2 eq. ha−1 yr−1, 722.2 kg CO2 eq. ha−1 yr−1 and 718.7 Mg kg−1 CO2 eq. ha−1 yr−1). The findings of the present study revealed that CSA with adaption of innovative measures (S6) improved 3-year mean system productivity by 10.5%, profitability by 29.4%, water productivity and energy productivity by 18.3% and 48.9%, respectively than FP. Thus, the results of our 3-year farmer’s participatory study suggest that in a RW system, climate smart agriculture practices have better adaptive capacity and could be a feasible option for attaining higher yields, farm profitability, energy-use efficiency and water productivity with sustained/improved environmental quality in smallholder production systems of Eastern IGP of India and other similar agro-ecologies of South Asia. Finally, the adoption of these CSAPs should be promoted in the RW rotation of IGP to ensure food security, restoration of soil health and to mitigate climate change, the key sustainable development goals (SDGs).


2015 ◽  
Vol 52 (1) ◽  
pp. 51-68 ◽  
Author(s):  
A. N. MICHENI ◽  
F. KANAMPIU ◽  
O. KITONYO ◽  
D. M. MBURU ◽  
E.N. MUGAI ◽  
...  

SUMMARYConservation agriculture (CA) is a promising technology for controlling soil degradation, mitigating drought, increasing crop yield and reducing production costs. We hypothesized that adopting CA system would improve system productivity and efficiency, hence resulting in higher profits. To test the hypothesis, we designed a study to evaluate water use efficiency (WUE) and the economic benefits (yield and gross margins) of CA in the upper and lower midlands agro-ecological zones of eastern Kenya. Four tillage treatments, including farmers’ practice (residues removed), conventional tillage (residues removed) and two CA practices with residue retention (zero tillage and furrow–ridge), were laid out in 22 farmers’ fields where each farm was treated as a replicate. The results are based on four consecutive seasons farmer–researcher managed trials during the period 2010 and 2012. CA significantly improved crop yields after the first season of experimentation. Joint use of zero tillage and furrow–ridge provided higher WUE and yield advantage (25–34%) in the third and fourth seasons compared to the conventional practices. The lower midlands zone gave higher WUE values, which can be explained by the effects of water harvesting and retention for longer period on CA treatments. CA practices have increased income on average by 12% resulted from labour cost reduction and yield increment. Weeding costs for conventional tillage were USD 88 ha−1 compared to USD 24 ha−1 for herbicide application under CA. Practicing CA will certainly increase crop yields, WUE, generate more revenue and diversify risks during poor seasons. However, these benefits may not necessarily be earned in the first season, but will accrue in subsequent seasons.


2016 ◽  
Vol 154 (8) ◽  
pp. 1327-1342 ◽  
Author(s):  
T. K. DAS ◽  
K. K. BANDYOPADHYAY ◽  
RANJAN BHATTACHARYYA ◽  
S. SUDHISHRI ◽  
A. R. SHARMA ◽  
...  

SUMMARYIn search of a suitable resource conservation technology under pigeonpea (Cajanus cajanL.)–wheat (Triticum aestivumL.) system in the Indo-Gangetic Plains, the effects of conservation agriculture (CA) on crop productivity and water-use efficiency (WUE) were evaluated during a 3-year study. The treatments were: conventional tillage (CT), zero tillage (ZT) with planting on permanent narrow beds (PNB), PNB with residue (PNB + R), ZT with planting on permanent broad beds (PBB) and PBB + R. The PBB + R plots had higher pigeonpea grain yield than the CT plots in all 3 years. However, wheat grain yields under all plots were similar in all years except for PBB + R plots in the second year, which had higher wheat yield than CT plots. The contrast analysis showed that pigeonpea grain yield of CA plots was significantly higher than CT plots in the first year. However, both pigeonpea and wheat grain yields during the last 2 years under CA and CT plots were similar. The PBB + R plots had higher system WUE than the CT plots in the second and third years. Plots under CA had significantly higher WUE and significantly lower water use than CT plots in these years. The PBB + R plots had higher WUE than PNB + R and PNB plots. Also, the PBB plots had higher WUE than PNB in the second and third years, despite similar water use. The interactions of bed width and residue management for all parameters in the second and third years were not significant. Those positive impacts under PBB + R plots over CT plots were perceived to be due to no tillage and significantly higher amount of estimated residue retention. Thus, both PBB and PBB + R technologies would be very useful under a pigeonpea–wheat cropping system in this region.


2016 ◽  
Vol 52 (4) ◽  
pp. 617-634 ◽  
Author(s):  
V. KARUNAKARAN ◽  
U. K. BEHERA

SUMMARYContinuous rice–wheat (RW) cropping in an area of 13.5 million ha with intensive tillage has resulted in over exploitation of resources, decline of the factor productivity, loss of soil fertility and biodiversity and decline of resource use efficiency in the Indo-Gangetic plains (IGPs) of South Asia. This has led to unsustainability of agriculture in the region. Replacement of a cereal-cereal system with a legume–cereal system may prove beneficial for long-term sustainability of the system. A field experiment was conducted with soybean–wheat (SW) rotation in the IGP of India during 2009–10 and 2010–11 to assess the suitability of conservation tillage versus conventional tillage (CT) and crop-establishment techniques, namely bed (B) planting versus flat (F) planting. The study revealed that the zero tillage (ZT) for soybean during rainy and for wheat during winter season either in flat or in bed system performed equally good with CT. The maximum system productivity (7.06 t ha−1 in 2009–10 and 8.48 t ha−1 in 2010–11) was obtained with combined application of wheat + soybean residue. The maximum net returns of ₹46.98 and ₹65.08 thousands and B:C ratio of 2.35 and 3.08 were recorded in the SW system with zero tillage-flat (ZT─F) during 2009–10 and 2010–11, respectively. The minimum energy of 64.67 and 63.01 ×103 MJ ha−1 was utilized as input energy with zero tillage-bed (ZT─B) while the maximum energy use efficiency of 4.10 and 5.14 was obtained with ZT─F and ZT─B for the SW system during 2009–10 and 2010–11 respectively. The gross output energy was maximum with wheat + soybean residue (241.6 and 265.7 ×103 MJ ha−1) contrary to this the net energy (194.4 and 213.4 ×103 MJ ha−1) and energy use efficiency (9.03 and 10.96) was maximum with control (no residue) in the SW system. In wheat there was 37.85% improvement in irrigation water use efficiency (WUE) in raised bed planting than flat planting and 28.57% of irrigation water was saved. The study suggested that ZT either bed or flat planting to both the crops can successfully adopted along with application wheat + soybean residue together with full recommended dose of NPK fertilizers to the system for improving productivity, profitability, soil health and sustainability of SW system in the IGPs of South Asia.


Sign in / Sign up

Export Citation Format

Share Document