scholarly journals Orchard Level Assessment of Irrigation Performance and Water Productivity of an Irrigation Community in Eastern Spain

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1829
Author(s):  
Herminia Puerto ◽  
Miguel Mora ◽  
Bernat Roig-Merino ◽  
Ricardo Abadía-Sánchez ◽  
José María Cámara-Zapata ◽  
...  

Over the last three decades, a great investment effort has been made in the modernization of irrigation in the Valencian Community (Spain). The initial change from distribution networks to pressurized ones and the shift towards drip irrigation systems was followed by improvements in irrigation scheduling, based on agrometeorological data, soil water content sensors, and remote sensing. These improvements are considered adequate for increasing irrigation water use efficiency, but it is difficult to find systematic measurements to assess its impacts on irrigation adequacy along with irrigation productivity in fruit orchards. This work presents the results of a four year assessment of irrigation water and energy use efficiency along with water productivity of a recently established irrigation community in the province of Valencia (Spain). The study was carried out at the orchard level and focused on two fruit crops: persimmon and peach trees. Six irrigation performance indicators, relative water supply (RWS), relative irrigation supply (RIS), yield performance (Yp), global water productivity (WPoverall), output per unit irrigation water (OUI), and the percent of nitrogen fertilization obtained by irrigation water, were defined and calculated for years 2017 to 2020 in 104 persimmon and peach orchards. The results showed that most of the farmers irrigated below the crop water requirements, showing RWS and RIS values less than 1, and there was great variability among farmers, especially in WPoverall and OUI indicators.

2020 ◽  
Vol 63 (1) ◽  
pp. 125-132
Author(s):  
Arjun S. Tayade ◽  
Srinivasavedantham Vasantha ◽  
Raja Arun kumar ◽  
Sheriff Anusha ◽  
Rajesh Kumar ◽  
...  

HighlightsSugarcane hybrids with improved IWUE have greater scope in sugarcane agriculture as irrigation water is getting scarce.Among sugarcane hybrids, Co 8371 registered high mean water productivity of 4.18 kg m-3, followed by Co 85019 (3.92 kg m-3), while in I2, six hybrids had significantly higher water productivity (Co 85019, Co 0212, Co 86249, Co 10026, Co 0218 and Co V92102) above 4 kg m-3.Deficit irrigation scheduling (irrigation at recommended interval, with 50% crop evapotranspiration replacement) appears to be far more useful than reducing frequency as well as quantity of irrigation water alone. Hybrid mean water productivity was 3.2, 2.7, and 2.1 kg m-3 in I0, I1, and I2, respectively.ABSTRACT. The escalating deficit rainfall scenario in India indicates that drought is a recurrent phenomenon associated with tropical sugarcane farming, and the availability of irrigation water for sugarcane cultivation will be much less in coming years. To meet the challenge of limited and costly water supply, tropical sugarcane growers will have to find ways of increasing the efficiency of irrigation to maintain high cane yields. More efficient irrigation systems, accurate irrigation scheduling, and the right choice of sugarcane hybrids are potential means of increasing irrigation water use efficiency (IWUE), water productivity (WP), and global water security. With the objective of optimizing irrigation water use, a field experiment evaluating the physiological efficiency of commercial sugarcane hybrids for WP in a sandy clay soil under water-limited conditions was conducted during 2016-2017 at the ICAR-Sugarcane Breeding Institute in Coimbatore, India. The replicated field experiment was laid out in split-plot design with three irrigation levels as the main plot and 33 sugarcane hybrids as subplots. The prevailing climatic conditions during the experiment represented a tropical wet and dry climate, with the wet season lasting from October to December due to the northeast monsoon. The results showed that full irrigation at recommended intervals with 100% crop evapotranspiration (ET) replacement (I0) produced significantly higher cane yield than deficit irrigation at recommended intervals with 50% crop ET replacement (I1) and skipping alternate irrigations with 50% crop ET replacement (I2). The deficit irrigation treatments (I1 and I2) had declines in cane yield of 41.2% and 56.4%, respectively. IWUE was similar in I0 and I1, while I2 had reduced IWUE by 23%. WP was significantly influenced by irrigation level; reduction in irrigation water reduced WP by 17.5% and 36.3% in I1 and I2 compared to I0. Among sugarcane hybrids, Co 85019, Co 13006, Co 10026, Co 99004, CoLk 8102, Co 86249, Co 8371, Co 94008, and Co 95020 yielded higher than the genotypic mean under both deficit irrigation treatments, suggesting their usefulness in deficit irrigation strategies. Sugarcane hybrids with high WP can play a pivotal role in sustaining sugarcane productivity and can reduce the large volumes of irrigation water consumed in water-scarce tropical India. Thus, considering water security, the implications of the results are of paramount importance in promoting the coordinated development and management of water, land, and related resources to maximize economic benefits and social welfare in an equitable manner without compromising the sustainability of vital ecosystems at local as well as national levels. Keywords: Cane yield, Global water security, Sugarcane, Water-limited condition.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


2016 ◽  
Vol 65 (1-2) ◽  
pp. 53-59
Author(s):  
Borivoj Pejić ◽  
Ksenija Mačkić ◽  
Srdjan Pavković ◽  
Branka Ljevnaić-Mašić ◽  
Miroljub Aksić ◽  
...  

Summary The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb.) grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha) was significantly higher compared to non irrigated (9,98 t/ha). Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.


2021 ◽  
Vol 13 (2) ◽  
pp. 677-685
Author(s):  
O. P. Singh ◽  
P. K. Singh

With the growing irrigation water scarcity, the researchers and policymakers are more concerned to improve the irrigation water use efficiency at farmers’ field level. The water-saving technologies provide greater control over water delivery to the crop root zone and reduce the non-beneficial evaporation from the crop field. Water productivity is an important concept for measuring and comparing water use efficiency. The present study tried to estimate the irrigation water use and physical water productivity of cotton under alternate furrow and drip irrigation methods in the Bhavnagar district of Gujarat. Results suggest that crop yield and physical water productivity were higher for cotton irrigated by drip method than alternate furrow method during normal rainfall and drought year. The irrigation water use under the drip method of irrigation was lower as compared to the alternate furrow method. In the case of total water (effective rainfall + irrigation water) use, per hectare crop yield and physical water productivity were higher for the drip method of irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall and drought year. In the case of total water use (effective rainfall + irrigation water), it was lower for drip irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall year and drought year. While estimating total water (effective rainfall + irrigation water) use, it was assumed that there is no return flow of water from the cotton field in the study area under both irrigation methods.


AGROFOR ◽  
2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Oumaima ASSOULI ◽  
Hamid EL BILALI ◽  
Aziz ABOUABDILLAH ◽  
Rachid HARBOUZE ◽  
Nabil El JAOUHARI ◽  
...  

Agriculture uses more than 80% of water resources in Morocco. The sector isinefficient in terms of water use due to the dominance of surface irrigation. Toaddress this issue, there have been efforts in Moroccan strategies to convert surfaceirrigation to localized one. This paper analyses the dynamics of conversion fromsurface irrigation to drip irrigation in Fez-Meknes region (north-eastern Morocco)through the lens of the Multi-Level Perspective (MLP) on socio-technicaltransitions. MLP framework suggests that transitions are the results of dialecticinteractions among a niche (cf. novelty of drip irrigation), a regime (cf. traditionalsystem of surface irrigation) and the socio-technical landscape (e.g. policies). MLPwas complemented with a multi-capital approach to better assess transitionimpacts. Results show that the area equipped with drip irrigation in Fez-Meknesregion increased from 2174 ha in 2008 to 39290 ha in 2016. Different programshave been implemented in the framework of the Green Morocco Plan to fosterirrigation transition e.g. the National Irrigation Water Saving Program (PNEEI),launched in 2007, aims to convert 550,000 ha to localized irrigation (e.g. dripirrigation) in 15 years. Thanks to these programs, financial and technical supporthas been provided to farmers to promote the adoption of water-saving irrigationtechniques and practices. Farm-level results show that transition to localizedirrigation decreases irrigation water use, increases yields and profitability (cf. grossmargin per ha), and improves water productivity. Despite an enabling policylandscape and positive transition impacts, surface irrigation is still maintained inthe region and farmers are reluctant to change for many reasons (e.g. age andeducation level, unclear land tenure, financial and administrative difficulties).Efforts are still needed to train farmers on irrigation scheduling and on the use ofsmart irrigation techniques to save water. Further research is required to betterunderstand current bottlenecks in the irrigation transition process and designappropriate and context-specific transition governance strategies.


2015 ◽  
Vol 66 (10) ◽  
pp. 1086 ◽  
Author(s):  
H. M. Al-Ghobari ◽  
F. S. Mohammad ◽  
M. S. A. El Marazky

Here, two types of smart irrigation controllers intended to reduce irrigation water are investigated under Saudi Arabia’s present water crisis scenario. These controllers are specially made for scheduling irrigation and management of landscaping. Consequently, the aim of this study is to adapt the efficient automated controllers to tomato crops, and for extension to other similar agricultural crops. The controllers are based on evapotranspiration and have been shown to be promising tools for scheduling irrigation and quantifying the water required by plants to achieve water savings. In particular, the study aims to evaluate the effectiveness of these technologies (SmartLine SL 1600and Hunter Pro-C) in terms of the amount of irrigation applied and compare them with conventional irrigation scheduling methods. The smart irrigation systems were implemented and tested under drip irrigation and subsurface irrigation for tomato (cv. Nema) in an arid region. The results revealed significant differences between the three irrigation-scheduling methods in both the amount of applied water and yield. For example, each 1 mm water depth applied to the tomato crop via subsurface (or drip) irrigation by SmartLine, Hunter Pro-C, and the control system yielded 129.70 kg (70.33 kg), 161.50 kg (93.47 kg), and 109.78 kg (108.32 kg), respectively. Generally, the data analysis indicates that the Hunter Pro-C system saves water and produces a higher yield with the greatest irrigation water-use efficiency (IWUE) of the irrigation scheduling methods considered. Moreover, the results indicate that the subsurface irrigation system produced a higher yield and IWUE than the drip system.


Sign in / Sign up

Export Citation Format

Share Document