scholarly journals Two-dimensional arrays of vertically packed spin-valves with picoTesla sensitivity at room temperature

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marilia Silva ◽  
Fernando Franco ◽  
Diana C. Leitao ◽  
Susana Cardoso ◽  
Paulo P. Freitas

AbstractA new device architecture using giant magnetoresistive sensors demonstrates the capability to detect very low magnetic fields on the pT range. A combination of vertically packed spin-valve sensors with two-dimensional in-plane arrays, connected in series and in parallel, delivers a final detection level of 360 pT/$$\sqrt{Hz}$$ Hz at 10 Hz at room temperature. The device design is supported by an analytical model developed for a vertically packed spin-valve system, which takes into account all magnetic couplings present. Optimization concerning the spacer thickness and sensor physical dimensions depending on the number of pilled up spin-valves is necessary. To push the limits of detection, arrays of a large number of sensing elements (up to 440,000) are patterned with a geometry that improves sensitivity and in a configuration that reduces the resistance, leading to a lower noise level. The final device performance with pT detectivity is demonstrated in an un-shielded environment suitable for detection of bio-signals.

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2574-2579 ◽  
Author(s):  
A. M. ZHANG ◽  
X. S. WU ◽  
L. SUN ◽  
A. HU

A series of NiO -containing Co/Cu/Co spin valves with the thickness Co of 5 nm and Cu of 2 nm were fabricated by magnetron sputtering technique with different growth parameters. NiO layer with the thickness of 40 nm is used as a coupling layer. Magnetoresistance (MR) of the spin valve with NiO layer under the bottom of Co/Cu/Co (BSV) is larger than that of the spin valve with NiO layer at the top of Co/Cu/Co (TSV) at room temperature. The MR values can be improved with decreasing the sputtering rate of copper layer. The studies by in-situ grazing incident X-ray scattering on the annealing temperature dependence of MR show that the decrease of the interface roughness between Co and NiO may increase the MR value, while the decrease of the coupling effect between NiO and Co decreases the MR value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Tseng ◽  
Jyun-Wei Chen ◽  
Wen-Jeng Hsueh

AbstractTopological insulators (TI) have extremely high potential in spintronic applications. Here, a topological insulators thin-film (TITF) spin valve with the use of the segment gate-controlled potential exhibits a huge magnetoresistance (MR) value higher than 1000% at room temperature which is more than 50 times the MR of typical topological insulators (TI) spin-valves. A high spin-polarized current is provided by the band structure generated by the tunable segment potential. The results reveal a very large resistance difference between the parallel and antiparallel configurations. The MR effect is strongly influenced by the thin-film thickness, the gate potential, the gate size, and the distribution. The proposed results will help to not only improve the room-temperature performance of the spin-valves but also enhance the applications of magnetic memories and spintronic devices.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Leilei Xu ◽  
Jiafeng Feng ◽  
Kangkang Zhao ◽  
Weiming Lv ◽  
Xiufeng Han ◽  
...  

Two-dimensional (2D) layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR) properties of a black phosphorus (BP) spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM) electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


2021 ◽  
Vol 118 (4) ◽  
pp. 042411
Author(s):  
Thomas Scheike ◽  
Qingyi Xiang ◽  
Zhenchao Wen ◽  
Hiroaki Sukegawa ◽  
Tadakatsu Ohkubo ◽  
...  

Author(s):  
Haohao Sheng ◽  
Haoxiang Long ◽  
Guanzhen Zou ◽  
Dongmei Bai ◽  
Junting Zhang ◽  
...  

2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Bo Han ◽  
Ruixue Zhu ◽  
Xiaomei Li ◽  
Mei Wu ◽  
Ryo Ishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document