scholarly journals Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maggie D. Johnson ◽  
Sara D. Swaminathan ◽  
Emily N. Nixon ◽  
Valerie J. Paul ◽  
Andrew H. Altieri

AbstractOcean deoxygenation threatens the persistence of coastal ecosystems worldwide. Despite an increasing awareness that coastal deoxygenation impacts tropical habitats, there remains a paucity of empirical data on the effects of oxygen limitation on reef-building corals. To address this knowledge gap, we conducted laboratory experiments with ecologically important Caribbean corals Acropora cervicornis and Orbicella faveolata. We tested the effects of continuous exposure to conditions ranging from extreme deoxygenation to normoxia (~ 1.0 to 6.25 mg L−1 dissolved oxygen) on coral bleaching, photophysiology, and survival. Coral species demonstrated markedly different temporal resistance to deoxygenation, and within a species there were minimal genotype-specific treatment effects. Acropora cervicornis suffered tissue loss and mortality within a day of exposure to severe deoxygenation (~ 1.0 mg L−1), whereas O. faveolata remained unaffected after 11 days of continuous exposure to 1.0 mg L−1. Intermediate deoxygenation treatments (~ 2.25 mg L−1, ~ 4.25 mg L−1) elicited minimal responses in both species, indicating a low oxygen threshold for coral mortality and coral resilience to oxygen concentrations that are lethal for other marine organisms. These findings demonstrate the potential for variability in species-specific hypoxia thresholds, which has important implications for our ability to predict how coral reefs may be affected as ocean deoxygenation intensifies. With deoxygenation emerging as a critical threat to tropical habitats, there is an urgent need to incorporate deoxygenation into coral reef research, management, and action plans to facilitate better stewardship of coral reefs in an era of rapid environmental change.

1995 ◽  
Vol 9 (5) ◽  
pp. 1274-1288 ◽  
Author(s):  
LAUREN J. CHAPMAN ◽  
LESLIE S. KAUFMAN ◽  
COLIN A. CHAPMAN ◽  
F. ELLIS MCKENZIE

Author(s):  
Andrew J. Watson ◽  
Timothy M. Lenton ◽  
Benjamin J. W. Mills

The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 10 5 –10 6 years, these ocean anoxic events (OAEs) being particularly associated with warm ‘greenhouse’ climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.


2020 ◽  
Author(s):  
Akihisa Seita ◽  
Hidenori Nakaoka ◽  
Reiko Okura ◽  
Yuichi Wakamoto

AbstractCancer cell populations consist of phenotypically heterogeneous cells. Growing evidence suggests that pre-existing phenotypic differences among cancer cells correlate with differential susceptibility to anticancer drugs and eventually lead to a relapse. Such phenotypic differences can arise not only externally driven by the environmental heterogeneity around individual cells but also internally by the intrinsic fluctuation of cells. However, the quantitative characteristics of intrinsic phenotypic heterogeneity emerging even under constant environments and their relevance to drug susceptibility remain elusive. Here we employed a microfluidic device, mammalian mother machine, for studying the intrinsic heterogeneity of growth dynamics of mouse lymphocytic leukemia cells (L1210) across tens of generations. The generation time of this cancer cell line had a distribution with a long tail and a heritability across generations. We determined that a minority of cell lineages exist in a slow-cycling state for multiple generations. These slow-cycling cell lineages had a higher chance of survival than the fast-cycling lineages under continuous exposure to the anticancer drug Mitomycin C. This result suggests that heritable heterogeneity in cancer cells’ growth in a population influences their susceptibility to anticancer drugs.


2016 ◽  
Vol 13 (6) ◽  
pp. 1977-1989 ◽  
Author(s):  
Helena Hauss ◽  
Svenja Christiansen ◽  
Florian Schütte ◽  
Rainer Kiko ◽  
Miryam Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg−1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey–predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Kayla L Gilmore ◽  
Zoe A Doubleday ◽  
Bronwyn M Gillanders

Lay summary It is poorly understood whether fish can acclimate to prolonged low-oxygen conditions (or hypoxia). Our study shows that prior long-term exposure to low-oxygen conditions improves tolerance to low-oxygen in a freshwater fish. The results of our study aid our understanding of long-term responses of freshwater fish to low-oxygen to hypoxic events.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea J Morash ◽  
Jeremy M Lyle ◽  
Suzanne Currie ◽  
Justin D Bell ◽  
Kilian M Stehfest ◽  
...  

Abstract The endangered and range-restricted Maugean skate (Zearaja maugeana) is subjected to large environmental variability coupled with anthropogenic stressors in its endemic habitat, Macquarie Harbour, Tasmania. However, little is known about the basic biology/physiology of this skate, or how it may respond to future environmental challenges predicted from climate change and/or increases in human activities such as aquaculture. These skate live at a preferred depth of 5–15 m where the dissolved oxygen (DO) levels are moderate (~55% air saturation), but can be found in areas of the Harbour where DO can range from 100% saturation to anoxia. Given that the water at their preferred depth is already hypoxic, we sought to investigate their response to further decreases in DO that may arise from potential increases in anthropogenic stress. We measured oxygen consumption, haematological parameters, tissue–enzyme capacity and heat shock protein (HSP) levels in skate exposed to 55% dissolved O2 saturation (control) and 20% dissolved O2 saturation (hypoxic) for 48 h. We conclude that the Maugean skate appears to be an oxyconformer, with a decrease in the rate of O2 consumption with increasing hypoxia. Increases in blood glucose and lactate at 20% O2 suggest that skate are relying more on anaerobic metabolism to tolerate periods of very low oxygen. Despite these metabolic shifts, there was no difference in HSP70 levels between groups, suggesting this short-term exposure did not elicit a cellular stress response. The metabolic state of the skate suggests that low oxygen stress for longer periods of time (i.e. &gt;48 h) may not be tolerable and could potentially result in loss of habitat or shifts in their preferred habitat. Given its endemic distribution and limited life-history information, it will be critical to understand its tolerance to environmental challenges to create robust conservation strategies.


Author(s):  
Nicolas Gruber

In the coming decades and centuries, the ocean’s biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean’s biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean’s carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO 2 ) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O 2 ) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors—warming, acidification and deoxygenation—will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean’s interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO 2 being the primary driver behind all three stressors, the primary mitigation strategy is to reduce these emissions.


2016 ◽  
Author(s):  
Margaret W Miller ◽  
Jocelyn Karazsia ◽  
Carolyn E Groves ◽  
Sean Griffin ◽  
Tom Moore ◽  
...  

The federal channel at Port of Miami, Florida, USA, was dredged between late 2013 and early 2015, to widen and deepen the channel. While the precise effects of the dredging on surrounding coral reefs are not well quantified, previously published remote sensing analyses, as well as agency and anecdotal reports suggest the most severe and largest area of sedimentation occurred on a coral reef feature referred to as the Inner Reef, particularly in the sector north of the channel. A regional warm-water mass bleaching event followed by a coral disease outbreak during this same time frame confounded the assessment of dredging-related impacts to coral reefs adjacent to the federal channel. In-water field assessments conducted after the completion of dredging and a time series analysis of tagged corals photographed pre-, during, and post-dredging, are used to discern dredging-related sedimentation impacts for the Inner Reef north. Results indicate increased sediment accumulation, severe in certain times and places, and an associated biological response, including significantly greater proportion of live coral tissue loss, occurred within coral reef sites located closer to the channel. Dredging projects near valuable and sensitive habitats subject to local and global stressors require monitoring methods capable of discerning non-dredging related impacts and adaptive management to ensure predicted and unpredicted project-related impacts are quantified. Anticipated increasing frequency and intensity of warming stress also suggests that manageable- but- unavoidable local stressors such as dredging should be partitioned from the warmest times of year.


2015 ◽  
Vol 12 (21) ◽  
pp. 18315-18344 ◽  
Author(s):  
H. Hauss ◽  
S. Christiansen ◽  
F. Schütte ◽  
R. Kiko ◽  
M. Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 μmol O2 kg−1, but are thought to decline in the course of climate change. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 μmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. A marked reduction in acoustic target strength (derived from shipboard ADCP, 75kHz) within the shallow OMZ at nighttime was evident. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 μmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified followed by zooplankton in response to the eddy OMZ: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect zooplankton avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 μmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


Sign in / Sign up

Export Citation Format

Share Document