scholarly journals Warming up, turning sour, losing breath: ocean biogeochemistry under global change

Author(s):  
Nicolas Gruber

In the coming decades and centuries, the ocean’s biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean’s biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean’s carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO 2 ) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O 2 ) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors—warming, acidification and deoxygenation—will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean’s interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO 2 being the primary driver behind all three stressors, the primary mitigation strategy is to reduce these emissions.

Author(s):  
Andrew J. Watson ◽  
Timothy M. Lenton ◽  
Benjamin J. W. Mills

The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 10 5 –10 6 years, these ocean anoxic events (OAEs) being particularly associated with warm ‘greenhouse’ climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.


2017 ◽  
Vol 74 (4) ◽  
pp. 1150-1158 ◽  
Author(s):  
Kaitlyn B. Lowder ◽  
Michael C. Allen ◽  
James M. D. Day ◽  
Dimitri D. Deheyn ◽  
Jennifer R. A. Taylor

Cryptic colouration in crustaceans, important for both camouflage and visual communication, is achieved through physiological and morphological mechanisms that are sensitive to changes in environmental conditions. Consequently, ocean warming and ocean acidification can affect crustaceans’ biophotonic appearance and exoskeleton composition in ways that might disrupt colouration and transparency. In the present study, we measured growth, mineralization, transparency, and spectral reflectance (colouration) of the caridean grass shrimp Hippolyte californiensis in response to pH and temperature stressors. Shrimp were exposed to ambient pH and temperature (pH 8.0, 17 °C), decreased pH (pH 7.5, 17 °C), and decreased pH/increased temperature (pH 7.5, 19 °C) conditions for 7 weeks. There were no differences in either Mg or Ca content in the exoskeleton across treatments nor in the transparency and spectral reflectance. There was a small but significant increase in percent growth in the carapace length of shrimp exposed to decreased pH/increased temperature. Overall, these findings suggest that growth, calcification, and colour of H. californiensis are unaffected by decreases of 0.5 pH units. This tolerance might stem from adaptation to the highly variable pH environment that these grass shrimp inhabit, highlighting the multifarious responses to ocean acidification, within the Crustacea.


2021 ◽  
Vol 7 ◽  
Author(s):  
Carsten Spisla ◽  
Jan Taucher ◽  
Lennart T. Bach ◽  
Mathias Haunost ◽  
Tim Boxhammer ◽  
...  

The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.


2016 ◽  
Vol 13 (6) ◽  
pp. 1977-1989 ◽  
Author(s):  
Helena Hauss ◽  
Svenja Christiansen ◽  
Florian Schütte ◽  
Rainer Kiko ◽  
Miryam Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg−1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey–predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


2020 ◽  
Author(s):  
Aubertin Marie-Liesse ◽  
Girardin Cyril ◽  
Houot Sabine ◽  
Le Brech Yann ◽  
Bena Sarah ◽  
...  

&lt;p&gt;Application of biochar, a solid product produced from biomass pyrolysis under low oxygen conditions, has been suggested as a low emission technology capable of increasing soil C sequestration to mitigate climate change. Its combined application with compost may be a promising avenue to ameliorate soil quality while increasing C sequestration. We hypothesized that biochar addition to compost reduces the mineralization of the mixture compared to compost alone. The study aimed to compare the mineralization rate of six biochar-compost mixtures differentiated by biochar feedstocks. Biochars were produced at temperatures ranging from 450 to 650&amp;#176;C for 10 minutes. Our conceptual approach included incubation of fresh and artificially aged biochar-compost mixtures. Physical ageing of the mixtures was performed with successive cycles of humidification/drying and freezing/thawing. We evaluated elemental composition and biological stability of the fresh and aged mixtures after incubation with a soil inoculum for 1 year. We monitored components of biochar-compost mixtures decomposition when biochar were produced from C4 feedstock by determination of the &lt;sup&gt;13&lt;/sup&gt;C signature of emitted CO&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt;&lt;p&gt;Combination of compost with biochar induced synergistic effects in terms of the mixtures stability. Isotopic analyses showed that carbon mineralization from compost was greatly reduced, while biochar mineralization was increased. Physical ageing induced a strong leaching of water-soluble compounds of both substrates. Carbon mineralization of aged material was however not reduced as much as expected when comparing with mineralization rates of single compounds of the mixture. Furthermore, isotopic signatures showed that compost, when amended with biochar, mineralized better after ageing. We thus suggest that the water-soluble fraction of biochar may induce an inhibitive effect on the mineralization of compost. The intensity of this effect seems to be dependent upon the feedstock of the biochar in the mixture.&lt;/p&gt;&lt;p&gt;We conclude that biochar addition to compost may reduce the mineralization of the mixture depending on biochar feedstock and that this effect may be alleviated after ageing.&lt;/p&gt;


2015 ◽  
Vol 12 (21) ◽  
pp. 18315-18344 ◽  
Author(s):  
H. Hauss ◽  
S. Christiansen ◽  
F. Schütte ◽  
R. Kiko ◽  
M. Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 μmol O2 kg−1, but are thought to decline in the course of climate change. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 μmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. A marked reduction in acoustic target strength (derived from shipboard ADCP, 75kHz) within the shallow OMZ at nighttime was evident. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 μmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified followed by zooplankton in response to the eddy OMZ: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect zooplankton avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 μmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


Author(s):  
Marion Gehlen ◽  
Nicolas Gruber

By the year 2008, the ocean had taken up approximately 140 Gt carbon corresponding to about a third of the total anthropogenic CO2 emitted to the atmosphere since the onset of industrialization (Khatiwala et al. 2009 ). As the weak acid CO2 invades the ocean, it triggers changes in ocean carbonate chemistry and ocean pH (see Chapter 1). The pH of modern ocean surface waters is already 0.1 units lower than in pre-industrial times and a decrease by 0.4 units is projected by the year 2100 in response to a business-as- usual emission pathway (Caldeira and Wickett 2003). These changes in ocean carbonate chemistry are likely to affect major ocean biogeochemical cycles, either through direct pH effects or indirect impacts on the structure and functioning of marine ecosystems. This chapter addresses the potential biogeochemical consequences of ocean acidification and associated feedbacks to the earth system, with focus on the alteration of element fluxes at the scale of the global ocean. The view taken here is on how the different effects interact and ultimately alter the atmospheric concentration of radiatively active substances, i.e. primarily greenhouse gases such as CO2 and nitrous oxide (N2O). Changes in carbonate chemistry have the potential for interacting with ocean biogeochemical cycles and creating feedbacks to climate in a myriad of ways (Box 12.1). In order to provide some structure to the discussion, direct and indirect feedbacks of ocean acidification on the earth system are distinguished. Direct feedbacks are those which directly affect radiative forcing in the atmosphere by altering the air–sea flux of radiatively active substances. Indirect feedbacks are those that first alter a biogeochemical process in the ocean, and through this change then affect the air–sea flux and ultimately the radiative forcing in the atmosphere. For example, when ocean acidification alters the production and export of organic matter by the biological pump, then this is an indirect feedback. This is because a change in the biological pump alters radiative forcing in the atmosphere indirectly by first changing the nearsurface concentrations of dissolved inorganic carbon and total alkalinity.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Claudia Scheckel ◽  
Marigona Imeri ◽  
Petra Schwarz ◽  
Adriano Aguzzi

Prion diseases are caused by PrPSc, a self-replicating pathologically misfolded protein that exerts toxicity predominantly in the brain. The administration of PrPSc causes a robust, reproducible and specific disease manifestation. Here, we have applied a combination of translating ribosome affinity purification and ribosome profiling to identify biologically relevant prion-induced changes during disease progression in a cell-type-specific and genome-wide manner. Terminally diseased mice with severe neurological symptoms showed extensive alterations in astrocytes and microglia. Surprisingly, we detected only minor changes in the translational profiles of neurons. Prion-induced alterations in glia overlapped with those identified in other neurodegenerative diseases, suggesting that similar events occur in a broad spectrum of pathologies. Our results suggest that aberrant translation within glia may suffice to cause severe neurological symptoms and may even be the primary driver of prion disease.


Ocean warming and acidification are major climate change stressors for marine invertebrate larvae, and their impacts differ between habitats and regions. In many regions species with pelagic propagules are on the move, exhibiting poleward trends as temperatures rise and ocean currents change. Larval sensitivity to warming varies among species, influencing their invasive potential. Broadly distributed species with wide developmental thermotolerances appear best able to avail of the new opportunities provided by warming. Ocean acidification is a multi-stressor in itself and the impacts of its covarying stressors differ among taxa. Increased pCO2 is the key stressor impairing calcification in echinoid larvae while decreased mineral saturation is more important for calcification in bivalve larvae. Non-feeding, non-calcifying larvae appear more resilient to warming and acidification. Some species may be able to persist through acclimatization/adaptation to produce resilient offspring. Understanding the capacity for adaptation/acclimatization across generations is important to predicting the future species composition of marine communities.


2014 ◽  
Vol 11 (14) ◽  
pp. 3965-3983 ◽  
Author(s):  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification (OA) is the consequence of rising atmospheric CO2 levels, and it is occurring in conjunction with global warming. Observational studies show that OA will impact ocean biogeochemical cycles. Here, we use an Earth system model under the RCP8.5 emission scenario to evaluate and quantify the first-order impacts of OA on marine biogeochemical cycles, and its potential feedback on our future climate. We find that OA impacts have only a small impact on the future atmospheric CO2 (less than 45 ppm) and global warming (less than a 0.25 K) by 2100. While the climate change feedbacks are small, OA impacts may significantly alter the distribution of biological production and remineralisation, which would alter the dissolved oxygen distribution in the ocean interior. Our results demonstrate that the consequences of OA will not be through its impact on climate change, but on how it impacts the flow of energy in marine ecosystems, which may significantly impact their productivity, composition and diversity.


Sign in / Sign up

Export Citation Format

Share Document