scholarly journals Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia

Author(s):  
Andrew J. Watson ◽  
Timothy M. Lenton ◽  
Benjamin J. W. Mills

The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 10 5 –10 6 years, these ocean anoxic events (OAEs) being particularly associated with warm ‘greenhouse’ climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aleksandra M. Mirończuk ◽  
Katarzyna E. Kosiorowska ◽  
Anna Biegalska ◽  
Magdalena Rakicka-Pustułka ◽  
Mateusz Szczepańczyk ◽  
...  

Abstract Background Yarrowia lipolytica is an unconventional yeast with a huge industrial potential. Despite many advantages for biotechnological applications, it possesses enormous demand for oxygen, which is a bottleneck in large scale production. In this study a codon optimized bacterial hemoglobin from Vitreoscilla stercoraria (VHb) was overexpressed in Y. lipolytica for efficient growth and erythritol synthesis from glycerol in low-oxygen conditions. Erythritol is a natural sweetener produced by Y. lipolytica under high osmotic pressure and at low pH, and this process requires high oxygen demand. Results Under these conditions the VHb overexpressing strain showed mostly yeast-type cells resulting in 83% higher erythritol titer in shake-flask experiments. During a bioreactor study the engineered strain showed higher erythritol productivity (QERY = 0.38 g/l h) and yield (YERY = 0.37 g/g) in comparison to the control strain (QERY = 0.30 g/l h, YERY = 0.29 g/g). Moreover, low stirring during the fermentation process resulted in modest foam formation. Conclusions This study showed that overexpression of VHb in Y. lipolytica allows for dynamic growth and efficient production of a value-added product from a low-value substrate.


1954 ◽  
Vol 11 (6) ◽  
pp. 933-953 ◽  
Author(s):  
W. Percy Wickett

By using standpipes set 12 inches into the stream bottom the oxygen content and apparent velocity of the gravel water in the controlled-flow section of Nile Creek were observed. Values of dissolved oxygen content and velocity that just supply the full oxygen demand of salmon eggs were defined. The high mortalities of chum salmon eggs in the pre-eyed stage, that have been found in certain areas, may be explained on the basis that oxygen demands of 0.00013 to 0.0003 mg./egg/hr. at temperatures of 0.1° to 8.2 °C. were not being met, owing to very low oxygen content or very low apparent velocity of the water in the gravel. Values as low as 0.2 p.p.m. and 2 mm./hr. were recorded. A portable gravel-water sampler is described, which can be used (1) to obtain samples of subsurface water for the determination of dissolved oxygen; and (2) to calculate apparent velocity of gravel water from rate of dilution of an added dye.


Author(s):  
Lillian R. McCormick ◽  
Lisa A. Levin

Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with ‘fast’ vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.


2021 ◽  
Author(s):  
Carl Hartick ◽  
Carina Furusho-Percot ◽  
Klaus Goergen ◽  
Stefan Kollet

<p>In the year 2018, Central Europe experienced a meteorological drought and a heatwave, which led to a subsequent evolution of a hydrological drought that is still detectable in subsurface water storage anomalies today. Most likely, the drought also led to significant changes in the energy balance between solar radiation, latent and sensible heat fluxes. In conjunction with water scarcity in the subsurface, these changes may lead to feedbacks that mitigate or enforce drought conditions in the context of land-atmosphere coupling. Understanding these feedbacks is of great interest, especially under various large-scale weather patterns that strongly influence the water and energy budgets over Europe at the interannual time scale. We improve our understanding by applying the Terrestrial Systems Modeling Platform (TSMP) over the 12km resolution pan-European CORDEX model domain simulating the water and energy cycles from the groundwater to the top of the atmosphere. TSMP couples a hydrological, land-surface and atmospheric model, facilitating studies of feedbacks between total water storage anomalies, the energy budget and atmospheric processes. To investigate the feedbacks, we performed TSMP ensemble simulations of three anomalously dry water years (September to August) over Central Europe. The ensembles were initialized with the surface and subsurface states of the end of August of the drought years 2011, 2018 and 2019 from an ERA-Interim driven climatology simulated continuously with TSMP from 1989 to 2019. Every ensemble consists of 22 members, each representing a full subsequent water year, sampled from ERA-Interim reanalysis meteorological boundary conditions from 1996 to 2019, thereby simulating the influence of drought conditions over a wide range of large-scale weather patterns that occurred in Europe since 1996. In addition, to illustrate the potential range of feedbacks we also ran idealized experiments with a completely dry or wet subsurface. The results show that drought conditions may have a significant impact on cloud water and solar radiation at interannual timescales. Effects in winter are negligible, while in summer, an impact of the drought conditions of the previous year on cloud water and solar radiation is detectable in all three ensembles. The results suggest that positive feedbacks between dry subsurface water storage anomalies and atmosphere processes are not negligible and may intensify drought conditions also at the interannual time scale.</p>


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gan Duan ◽  
Rahul Ram ◽  
Yanlu Xing ◽  
Barbara Etschmann ◽  
Joël Brugger

AbstractThe dynamic evolutions of fluid-mineral systems driving large-scale geochemical transformations in the Earth’s crust remain poorly understood. We observed experimentally that successive sodic and potassic alterations of feldspar can occur via a single self-evolved, originally Na-only, hydrothermal fluid. At 600 °C, 2 kbar, sanidine ((K,Na)AlSi3O8) reacted rapidly with a NaCl fluid to form albite (NaAlSi3O8); over time, some of this albite was replaced by K-feldspar (KAlSi3O8), in contrast to predictions from equilibrium reaction modelling. Fluorine accelerated the process, resulting in near-complete back-replacement of albite within 1 day. These findings reveal that potassic alteration can be triggered by Na-rich fluids, indicating that pervasive sequential sodic and potassic alterations associated with mineralization in some of the world’s largest ore deposits may not necessarily reflect externally-driven changes in fluid alkali contents. Here, we show that these reactions are promoted at the micro-scale by a self-evolving, kinetically-driven process; such positive feedbacks between equilibrium and kinetic factors may be essential in driving pervasive mineral transformations.


2018 ◽  
Vol 78 (8) ◽  
pp. 1704-1714 ◽  
Author(s):  
François-René Bourgeois ◽  
Frédéric Monette ◽  
Daniel G. Cyr

Abstract To develop a better understanding for fixed biomass processes, the development of a nitrifying bacterial biofilm, as well as the performance of treatment during modifications to operational conditions of a full-scale submerged biological filter were examined. The development of the nitrifying biofilm was investigated at four depth levels (1, 2, 4 and 5 feet). The result of bacterial subpopulations analyzed by qPCR relative to the physico-chemical parameters of the wastewater during the various tests (sustained aeration, modified backwash parameters and inflow restriction) revealed an increase of the relative presence of nitrifying microorganisms throughout the biofilm (especially for nitrite oxidizing bacteria (NOB)), but this was not necessarily accompanied by a better nitrification rate. The highest observed nitrification rate was 49% of removal in the test cell during backwashing conditions, whereas the relative ammonia oxidizing bacteria (AOB) population was 0.032% and NOB was 0.008% of the total biomass collected. The highest percentage of nitrifying bacteria observed (0.034% AOB and 0.18% NOB) resulted in a nitrification rate of 21%. The treatment of organic matter determined by measuring the chemical and biochemical oxygen demand (COD, CBOD5) was improved.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuo Cao ◽  
Yang Yang ◽  
Guiqi Bi ◽  
David Nelson ◽  
Sheng Hu ◽  
...  

Many fungi form persistent and dormant sclerotia with compact hardened mycelia during unfavorable circumstances. While most of these sclerotia are small in size, Wolfiporia cocos, a wood-decay fungus, grows into giant sclerotia, which are mainly composed of polysaccharides of linear (1→3)-β-D-glucans. To explore the underlying mechanism of converting sophisticated wood polysaccharides for biosynthesis of highly homogenized glucans in W. cocos, we sequenced and assembled the genome of a cultivated W. cocos strain (WCLT) in China. The 62-Mb haploid genome contains 44.2% repeat sequences, of which, 48.0% are transposable elements (TEs). Contrary to the genome of W. cocos from North America, WCLT has independently undergone a partial genome duplication (PGD) event. The large-scale TE insertion and PGD occurrence overlapped with an archeological Pleistocene stage of low oxygen and high temperature, and these stresses might have induced the differences in sclerotium due to geographical distribution. The wood decomposition enzymes, as well as sclerotium-regulator kinases, aquaporins, and highly expanded gene families such as NAD-related families, together with actively expressed 1,3-β-glucan synthase for sclerotium polysaccharides, all have contributed to the sclerotium formation and expansion. This study shall inspire further exploration on how fungi convert wood into simple glucans in the sclerotium of W. cocos.


2016 ◽  
Vol 13 (6) ◽  
pp. 1977-1989 ◽  
Author(s):  
Helena Hauss ◽  
Svenja Christiansen ◽  
Florian Schütte ◽  
Rainer Kiko ◽  
Miryam Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg−1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey–predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


Sign in / Sign up

Export Citation Format

Share Document