scholarly journals Effects of size and position of an unconnected aluminum electrode on bipolar anodization in an AC electric field

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Takeuchi ◽  
Hidetaka Asoh

AbstractThe effects of the size and position of an aluminum bipolar electrode (BPE) on the uniformity of formation of anodic porous alumina in an alternating current electric field were investigated. Anodized specimens were dyed, and the resistance was measured after the specimens were anodized again. Phenomena observed during film formation indicated that the BPEs had unique potential distributions that strongly depended on their length and width. The color variations and electrical resistance of the BPEs were symmetrical and varied from the centers of the BPEs to their ends. When multiple BPEs were processed at the same time, their position in the non-uniform electric field was demonstrated to be an important factor for controlling the uniformity of film formation. The best results were obtained when the BPE was placed at the center of the defined space.

RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90318-90321 ◽  
Author(s):  
Hidetaka Asoh ◽  
Mami Ishino ◽  
Hideki Hashimoto

Anodic porous alumina films can be formed by indirect oxidation under an alternating-current electric field without a direct electrical connection.


2013 ◽  
Vol 777 ◽  
pp. 253-257
Author(s):  
Jin Lan Xu ◽  
Dong Dong Sun ◽  
Ting Lin Huang ◽  
Long Fei Han

Electrokinetic remediation is an effective technology to enhance bioremediation of oil-contaminated soil as the transport process of non-polar organic contaminants in soil was promoted under low-power direct current electric fields. In this study three treatments including the application of electric field treatment alone, inoculation treatment alone, and combination of the application of electric field and inoculation treatment were carried out. The results indicated that highest removal efficiency was 83% in couple of the application of electric field and inoculation treatment. TPH concentration decreased from 6000 mg.kg-1 to 2000 mg.kg-1 when a 30 voltage direct current electric field was applied to oil-contaminated soil for 10 min after 4 days. It was observed that dehydrogenase activity had no increase after application direct current electric field. However, the TPH degradation efficiency was 52% higher than the control treatment. GC analysis showed that n-alkanes (C14-C31) were preferentially degraded, and soil remaindered more low quality compounds after the application of electric field treatment applied 52 days. These results indicated that the application of electric field improved degradation of inoculated bacteria through promoting the transport of nutrients, such as nitrogen and phosphorous and electron acceptors.


2015 ◽  
Vol 656-657 ◽  
pp. 549-553
Author(s):  
Kyohei Nishimoto ◽  
Kozo Taguchi

Dielectrophoresis (DEP) force will arise when an inhomogeneous AC electric field with sinusoidal wave is applied to microelectrodes. By using DEP, we could distinguish between viable and non-viable cells by their movement through a non-uniform electric field. In this paper, we propose a yeast cell separation system, which utilizes an Au DEP chip and an optical tweezers. The Au DEP chip is planar quadrupole microelectrodes, which were fabricated by Au thin-film and a box cutter. This fabrication method is low cost and simpler than previous existing methods. The tip of the optical tweezers was fabricated by dynamic chemical etching in a mixture of hydrogen fluoride and toluene. The optical tweezers has the feature of high manipulation performance. That does not require objective lens for focusing light because the tip of optical tweezers has conical shape. By using both the Au DEP chip and optical tweezers, we could obtain three-dimensional manipulation of specific cells after viability separation.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (15) ◽  
pp. 2717-2727 ◽  
Author(s):  
Prateek Benhal ◽  
J. Geoffrey Chase ◽  
Paul Gaynor ◽  
Björn Oback ◽  
Wenhui Wang

First report on 3D rotation of cells using alternating current electric field on a single, open-top, and cost effective biochip.


Sign in / Sign up

Export Citation Format

Share Document