scholarly journals Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hung Caohuy ◽  
Ofer Eidelman ◽  
Tinghua Chen ◽  
Shufeng Liu ◽  
Qingfeng Yang ◽  
...  

AbstractTo initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin, as well as sugar-free derivatives digitoxigenin and digoxigenin, are high-affinity competitive inhibitors of ACE2 binding to the Original [D614] S1 and the α/β/γ [D614G] S1 proteins. These drugs also inhibit ACE2 binding to the Original RBD, as well as to RBD proteins containing the β [E484K], Mink [Y453F] and α/β/γ [N501Y] mutations. As hypothesized, we also found that ouabain, digitoxin and digoxin blocked penetration by SARS-CoV-2 Spike-pseudotyped virus into human lung cells, and infectivity by native SARS-CoV-2. These data indicate that cardiac glycosides may block viral penetration into the target cell by first inhibiting ACE2:RBD binding. Clinical concentrations of ouabain and digitoxin are relatively safe for short term use for subjects with normal hearts. It has therefore not escaped our attention that these common cardiac medications could be deployed worldwide as inexpensive repurposed drugs for anti-COVID-19 therapy.

2021 ◽  
Author(s):  
Hung Caohuy ◽  
Ofer Eidelman ◽  
Tinghua Chen ◽  
Qingfeng Yang ◽  
Alakesh Bera ◽  
...  

To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin are high-affinity competitive inhibitors of ACE2 binding to the Wuhan S1 and the European [E614G] S1 proteins. These drugs also inhibit ACE2 binding to the Wuhan RBD, as well as to RBD proteins containing the S.Africa [E484K], Mink [Y453F] and UK [N501Y] mutations. As hypothesized, we also found that ouabain and digitoxin blocked penetration by SARS-CoV-2 Spike-pseudotyped virus into human lung cells. These data indicate that cardiac glycosides may block viral penetration into the target cell by first inhibiting ACE2:Spike binding. Clinical concentrations of ouabain and digitoxin are relatively safe for short term use for subjects with normal hearts. It has therefore not escaped our attention that these common cardiac medications could be deployed as inexpensive repurposed drugs for anti-COVID-19 therapy.


Author(s):  
Ruidong Li ◽  
Albert Liclican ◽  
Yili Xu ◽  
Jared Pitts ◽  
Congrong Niu ◽  
...  

Remdesivir (RDV; GS-5734; Veklury®), the first FDA-approved antiviral to treat COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (1) bioinformatic analysis of nucleoside/tide metabolic enzyme mRNA expression using public human tissue and lung single-cell RNAseq datasets; (2) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells; (3) biochemical studies on the catalytic rate of key enzymes; (4) effects of specific enzyme inhibitors on the GS-443902 formation; and (5) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate Met X, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19, they also enable efficient intracellular metabolism of RDV and its Met X to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.


2021 ◽  
Author(s):  
Taisho Yamada ◽  
Seiichi Sato ◽  
Yuki Sotoyama ◽  
Yasuko Orba ◽  
Hirofumi Sawa ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 750
Author(s):  
Werner E. G. Müller ◽  
Meik Neufurth ◽  
Shunfeng Wang ◽  
Heinz C. Schröder ◽  
Xiaohong Wang

The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 µg ml−1 causes a decrease in cell viability (by ~70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold). Importantly, the BLM-caused effects on cell growth and DNA integrity are substantially suppressed by polyP. In parallel, the enlargement of the nuclei/chromatin in BLM-treated cells (diameter, 20–25 µm) is normalized to ~12 µm after co-incubation of the cells with BLM and polyP. A sequential application of the drugs (BLM for 3 days, followed by an exposure to polyP) does not cause this normalization. During co-incubation of BLM with polyP the gene for the BLM hydrolase is upregulated. It is concluded that by upregulating this enzyme polyP prevents the toxic side effects of BLM. These data might also contribute to an application of BLM in COVID-19 patients, since polyP inhibits binding of SARS-CoV-2 to cellular ACE2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. A. Leach ◽  
A. Mohr ◽  
E. S. Giotis ◽  
E. Cil ◽  
A. M. Isac ◽  
...  

AbstractSARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


RSC Advances ◽  
2019 ◽  
Vol 9 (43) ◽  
pp. 25039-25047 ◽  
Author(s):  
Dhanya T. Jayaram ◽  
Ashwath Kumar ◽  
Linda E. Kippner ◽  
Po-Yi Ho ◽  
Melissa L. Kemp ◽  
...  

Human lung cells have a multi-generational response to TiO2 nanoparticle exposure determined by RNA-Seq and fluorescence microscopy.


Sign in / Sign up

Export Citation Format

Share Document