equilibrium bond length
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Tom Kirchner

Abstract Electron removal in collisions of alpha particles with neon dimers is studied using an independent-atom-independent-electron model based on the semiclassical approximation of heavy-particle collision physics. The dimer is assumed to be frozen at its equilibrium bond length and collision events for the two ion-atom subsystems are combined in an impact parameter by impact parameter fashion for three mutually perpendicular orientations. Both frozen atomic target and dynamic response model calculations are carried out using the coupled-channel two-center basis generator method. We pay particular attention to inner-valence Ne(2s) electron removal, which is associated with interatomic Coulombic decay (ICD), resulting in low-energy electron emission and dimer fragmentation. Our calculations confirm a previous experimental result at 150 keV/amu impact energy regarding the relative strength of ICD compared to direct electron emission. They further indicate that ICD is the dominant Ne+ + Ne+ fragmentation process below 10 keV/amu, suggesting that a strong low-energy electron yield will be observed in the ion-dimer system in a regime in which the creation of continuum electrons is a rare event in the ion-atom problem.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivan O. Antonov ◽  
Patrick R. Stollenwerk ◽  
Sruthi Venkataramanababu ◽  
Ana P. de Lima Batista ◽  
Antonio G. S. de Oliveira-Filho ◽  
...  

AbstractImproved optical control of molecular quantum states promises new applications including chemistry in the quantum regime, precision tests of fundamental physics, and quantum information processing. While much work has sought to prepare ground state molecules, excited states are also of interest. Here, we demonstrate a broadband optical approach to pump trapped SiO+ molecules into pure super rotor ensembles maintained for many minutes. Super rotor ensembles pumped up to rotational state N = 67, corresponding to the peak of a 9400 K distribution, had a narrow N spread comparable to that of a few-kelvin sample, and were used for spectroscopy of the previously unobserved C2Π state. Significant centrifugal distortion of super rotors pumped up to N = 230 allowed probing electronic structure of SiO+ stretched far from its equilibrium bond length.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. A. Onate ◽  
M. C. Onyeaju ◽  
A. Abolarinwa ◽  
A. F. Lukman

Abstract The approximate analytical solutions of the three-dimensional radial Schrödinger wave equation with a multiple potential function has been studied using a suitable approximation scheme to the centrifugal term in the framework of parametric Nikiforov–Uvarov method. The energy equation and the wave function were obtained. The calculated wave function was used to study Shannon entropy and variance via expectation values. The behaviour of Shannon entropy and variance respectively with the equilibrium bond length were examined in detail. A special case of the multiple potential (pseudoharmonic-like potential) was equally examined under Shannon entropy and variance. For further application of the study, some diatomic molecules were examined under variance and Shannon entropy. Finally, some variance inequalities were derived using Cramer-Rao uncertainty relation and these were justified by numerical results.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050209
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
M. U. Ibezim-Ezeani ◽  
Hewa Y. Abdullah

The modified version of the generalized Mobius square (GMS) potential has been obtained by employing the dissociation energy and equilibrium bond length as explicit parameters. The potential parameters have been defined in terms of the molecular parameters. The modified GMS potential has also been used to model internuclear interaction potential curves for different states of diatomic molecules. Also, we have obtained the rotational–vibrational energy spectra of the new GMS potential model, both analytically and numerically for the different diatomic molecules. This was done by employing a Pekeris-type approximation scheme and an appropriate coordinate transformation to solve the Schrodinger equation. Our results have been compared with the experimental Rydberg–Klein–Rees (RKR) data and its corresponding average absolute deviations in terms of the dissociation energy computed. The effects of the vibrational and rotational quantum numbers on the rotational–vibrational energies for the different states of the various diatomic molecules have also been discussed. This paper has shown to be highly relevant to the studies of thermodynamic and thermochemical functions of diatomic molecules.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Thomas E. O’Brien ◽  
Bruno Senjean ◽  
Ramiro Sagastizabal ◽  
Xavier Bonet-Monroig ◽  
Alicja Dutkiewicz ◽  
...  

AbstractModeling chemical reactions and complicated molecular systems has been proposed as the “killer application” of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential toward this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within $$0.014$$0.014 Å of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H$${}_{2}$$2 molecule, finding agreement at the equilibrium bond length to within $$0.06$$0.06 a.u. ($$2 \%$$2% relative error).


2019 ◽  
Vol 1 (1) ◽  
pp. 53-71
Author(s):  
David Stephen A ◽  
Shankar M

The bond topological analysis of Cyclotrimethylene-trinitramine (RDX) energetic molecule has been carried out for the wave function obtained from the ab initio and DFT methods of quantum chemical calculations. The geometrical parameters of all bonds are compared with that of experimental reports. The inclusion of diffuse function in HF basis set levels makes the significant shift of bond critical point towards carbon atoms of C–N bonds. The heteroatomic bond density character is well understood from unequal C-cp and cp-N distances in all C–N bonds. For all the level of calculations, the maximum bond density was found for all N=O bonds, attributes the maximum potential energy V(r). The N–N bond properties are strongly depends upon the equilibrium bond length which clears from charge concentration in shorter N1–N4 bond and charge depletion found in longer N2–N5 and N3–N6 bonding regions. The bond topological analysis of all bonds in RDX molecule resulted that the N–N bond is the weakest among all the other bonds. The weakness of N2–N5 and N3–N6 bonds than N1–N4 bond of RDX has also been analyzed from energy density calculation from various level of theories as an alternate for Laplacian of electron density. From the analysis of CHELPG charges at the MP2 level, the N–N bonds of RDX appears to have a significant ionic nature which attributes strong hyperconjugation effect. The hyperconjugation effect of RDX, due to polarization of    N–N bonds, is the additional proof of weak N–N bonds in RDX explosive. The isosurface electrostatic potential shows the electro positive and negative region in the molecule. A large negative potential found at the vicinity of oxygen atoms.


2019 ◽  
Vol 21 (7) ◽  
pp. 3564-3573 ◽  
Author(s):  
Mattia Melosso ◽  
Luca Bizzocchi ◽  
Filippo Tamassia ◽  
Claudio Degli Esposti ◽  
Elisabetta Canè ◽  
...  

First observation of the THz spectrum of 15ND. Global analysis of the imidogen radical spectra and derivation of the Born–Oppenheimer equilibrium bond length.


2017 ◽  
Author(s):  
Arijit Bag

To reduce the computation cost of Configuration Interaction (CI) method, a new technique is used to calculate the coefficients of doubly excited determinants directly from orbital energies, orbital overlap matrix and electron population obtained from Hartree Fock level run. This approach to approximate the coefficients of CI wave function is termed as <b>transition probability approximated CI (TPA-CI).</b> In principle, calculated dynamical electron correlation energy of TPA-CI and Full CI (FCI) are equivalent. It is observed that computed TPA-CI correlation energies of hydrogen, water, ammonia and ozone are very close to FCI values, within 5% error. The potential energy curve of the hydrogen molecule is also studied and it is found that the energy is minimum at its equilibrium bond length.<br><br>


2017 ◽  
Author(s):  
Arijit Bag

To reduce the computation cost of Configuration Interaction (CI) method, a new technique is used to calculate the coefficients of doubly excited determinants directly from orbital energies, orbital overlap matrix and electron population obtained from Hartree Fock level run. This approach to approximate the coefficients of CI<br>wave function is termed as <b>transition probability approximated CI (TPA-CI).</b> In principle, calculated dynamical electron correlation energy of TPA-CI and Full CI (FCI) are equivalent. It is observed that computed TPA-CI correlation energies of hydrogen, water, ammonia and ozone are very close to FCI values, within 5% error. The potential energy curve of the hydrogen molecule is also studied and it is found that the energy is minimum at its equilibrium bond length.<br><br>


Sign in / Sign up

Export Citation Format

Share Document