scholarly journals In vitro additive effects of dalbavancin and rifampicin against biofilm of Staphylococcus aureus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Jacob ◽  
Oliwia Makarewicz ◽  
Anita Hartung ◽  
Steffen Brodt ◽  
Eric Roehner ◽  
...  

AbstractDalbavancin is a novel glycopeptide antibiotic approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs). It is characterized by a potent activity against numerous Gram-positive pathogens, a long elimination half-life and a favorable safety profile. Most recently, its application for the treatment of periprosthetic joint infections (PJIs) was introduced. The aim of this study was to proof our hypothesis, that dalbavancin shows superior efficacy against staphylococcal biofilms on polyethylene (PE) disk devices compared with vancomycin and additive behavior in combination with rifampicin. Staphylococcus aureus biofilms were formed on PE disk devices for 96 h and subsequently treated with dalbavancin, vancomycin, rifampicin and dalbavancin-rifampicin combination at different concentrations. Quantification of antibacterial activity was determined by counting colony forming units (CFU/ml) after sonification of the PE, serial dilution of the bacterial suspension and plating on agar-plates. Biofilms were additionally life/dead-stained and visualized using fluorescence microscopy. Dalbavancin presented superior anti-biofilm activity compared to vancomycin. Additive effects of the combination dalbavancin and rifampicin were registered. Dalbavancin combined with rifampicin presents promising anti-biofilm activity characteristics in vitro. Further in vivo studies are necessary to establish recommendations for the general use of dalbavancin in the treatment of PJIs.

2018 ◽  
Vol 44 (1) ◽  
pp. 6
Author(s):  
Ljiljana Suvajdžić ◽  
Slobodan Gigov ◽  
Aleksandar Rašković ◽  
Srđan Stojanović ◽  
Maja Bekut ◽  
...  

Background: Multiple resistances to antibiotics are an emergent problem worldwide. Scientists intensively search for new substances with the antimicrobial potential or the mode to restore the activity of old-generation antibiotics. Ampicillin is the antibiotic with the expanded range of antimicrobial activity, but its use has decreased due to the poor absorption and highly developed resistance. In vivo studies showed that ampicillin has better absorption and bioavailability if combined with bile acid salts. The aim of this study was to examine antimicrobial effects of ampicillin alone and its combination with semisynthetic monoketocholic acid salt (MKH) in vitro.Materials, Methods & Results: In this study, commercial preparation of ampicillin and sodium salt of 3α,7α-dihydroxy-12oxo-5β-cholanate were used. Their effects were evaluated on Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium), obtained from urine specimens of dogs with clinically manifested cystitis. The first two investigated strains were ampicillin-sensitive, while E. faecium was resistant to ampicillin. Modified macrodilution method according to Clinical and Laboratory Standards Institute Guidelines (M7-A8) was performed. Bacterial suspension equivalent to 0.5 McFarland was prepared in saline, compared to the standard (Biomerieux) ad oculi. The density was checked spectrophotometrically at a wavelength of 625 nm and adjusted if necessary to the desired absorbance from 0.08 to 0.1. The resultant suspension was diluted 1:100 and inoculated in test tubes. Number of bacteria was counted on Petri plates using dilutions from 10-3 to 10-7 in order to obtain valid and countable plates. One hundred microliters of appropriate dilutions were aseptically plated in triplicate onto nutrient agar. Plates were incubated on 37°C for 72 h, under aerobic conditions. The number of colony forming units (CFU) was determined by direct counting. As a valid for enumeration, we took plates with 30 to 300 CFU. Percentage of killed bacteria for ampicillin was from 69.33-95.19% for E. coli, 87.1296.92% for E. faecalis and 7.20-33.30% for E. faecium. Ampicillin applied in the combination with MKH killed 99.99% to 100% of E. coli, 94.59% to 99.91% of E. faecalis and 31.73% to 64.76% of E. faecium. Mean percentage of killed bacteria for ampicillin was 81.93% for E. coli, 91.64% for E. faecalis, and 18.13% for E. faecium, while in combination with MKH percentage was 99.96% for E. coli, 98.23% for E. faecalis and 47.54% for E. faecium.Discussion: Results are presented as pharmacological minimal inhibitory concentration (MIC) values. Ampicillin was applied at the concentration higher than the therapeutic one, which could explain high MIC values for E. coli and E. faecalis. The combination of ampicillin with MKH showed the best improvement of antimicrobial effect on E. faecium (Δ = 29.41%), isolate that was resistant to ampicillin when applied alone. In all the investigated isolates, the combinations with MKH were more effective than ampicillin administered alone. It seems that MKH demonstrates a synergistic antimicrobial activity with ampicillin in vitro, which considerably decreases MIC values for all investigated isolates. These results implicate that MKH could restore the previous activity of ampicillin against some bacteria, which could be a significant benefit for clinical practice.


1980 ◽  
Vol 6 (suppl A) ◽  
pp. 55-61 ◽  
Author(s):  
J. Klastersky ◽  
H. Gaya ◽  
S. H. Zinner ◽  
C. Bernard ◽  
J-C. Ryff ◽  
...  

1984 ◽  
Vol 2 (4) ◽  
pp. 282-286 ◽  
Author(s):  
S E Salmon ◽  
L Young ◽  
B Soehnlen ◽  
R Liu

The new anthracycline analog, esorubicin (4'deoxy-doxorubicin, ESO), was tested against fresh biopsies of human solid tumors in vitro in clonogenic assay and the results were contrasted to those obtained with doxorubicin (DOX). ESO appeared to be significantly more potent on a weight basis than DOX in these studies, and exhibited a spectrum of antitumor activity in vitro that was in general qualitatively similar to that observed with DOX. In vitro antitumor activity was observed in a wide variety of human cancers including anthracycline-sensitive tumor types. ESO has previously been reported to have decreased cardiac toxicity in preclinical models as compared to DOX. Comparative testing of these anthracyclines on granulocyte-macrophage colony-forming units (GM-CFUs) and tumor colony forming units (TCFUs) indicated that the in vitro GM-CFU assay is more sensitive to these myelosuppressive drugs than are TCFUs, and underscores the need for in vivo studies to determine normal tissue toxicity and the therapeutic index of a drug. Early results of phase I studies suggest that with respect to myelosuppression, the maximally tolerated dose of ESO will be about half that of DOX. The increased in vitro antitumor potency observed for ESO and a spectrum of activity (even at one half the dose of DOX) supports the broad testing of ESO in the clinic to determine whether it will prove to be a more effective and less toxic anthracycline.


1984 ◽  
Vol 51 (4) ◽  
pp. 513-523 ◽  
Author(s):  
Neil Craven ◽  
James C. Anderson

SummaryMacrophages isolated from the involuted bovine mammary gland were cultured in vitro. Phagocytosis of opsonized Staphylococcus aureus occurred rapidly, but intracellular killing of bacteria was slow. Many intracellular staphylococci survived for up to 4 d exposure to extracellular cloxacillin and emerged from within the macrophages to multiply extracellularly when the antibiotic was inactivated. Rifampicin was significantly more efficient than cloxacillin in killing intracellular S. aureus after 18 h incubation, but it too failed to sterilize the cultures within 3 d. Staphylococci, which had remained viable within macrophages during 20 h incubation with extracellular cloxacillin, showed an increased sensitivity to dilute lysostaphin on subsequent exposure. A 3 d course of intramammary therapy with cloxacillin, commencing simultaneously with an infecting inoculum of ∼108 colony forming units (c.f.u.) S. aureus, apparently eliminated the infection from one quarter of the udders of each of three lactating cows, but bacteria were re-isolated from two cows after a delay of several days. However, when other quarters of the same cows were infected with ∼108 c.f.u. S. aureus which had been phagocytosed by autologous mammary macrophages, similar simultaneous antibiotic therapy failed to affect these infections. The in vitro and in vivo findings indicate the significance of intracellular survival of S. aureus as a factor contributing to failure of antibiotic therapy.


2015 ◽  
Vol 99 (9) ◽  
pp. 4031-4043 ◽  
Author(s):  
Mariusz Grinholc ◽  
Joanna Nakonieczna ◽  
Grzegorz Fila ◽  
Aleksandra Taraszkiewicz ◽  
Anna Kawiak ◽  
...  

2009 ◽  
Vol 37 (4) ◽  
pp. 1115-1126 ◽  
Author(s):  
G-Y Zou ◽  
H Shen ◽  
Y Jiang ◽  
X-L Zhang

This study was designed to evaluate the efficacy of focal hyperthermia and rifampin in vitro and in vivo using a rabbit model of foreign-body infection by methicillin-resistant Staphylococcus aureus (MRSA). In vitro studies demonstrated bacterial re-growth and development of rifampin resistance after 24 h with rifampin alone, which was prevented under hyperthermic conditions. For the in vivo studies, rifampin was administered intraperitoneally every 12 h for 7 days to rabbits with MRSA-containing cages implanted into their flanks. When combined with hyperthermia at 39°C, 41°C and 43°C, rifampin significantly reduced in-cage bacterial counts by > 3.0 log10 colony forming units/ml compared with rifampin alone. Eradication of cage-associated infection was achieved more effectively when rifampin was combined with hyperthermia, with cure rates of 70-95% on day 10. Focal hyperthermia combined with rifampin prevented the emergence of rifampin resistance and maintained rifampin efficacy. These findings might have implications for orthopaedic surgery.


1996 ◽  
Vol 17 (3) ◽  
pp. 178-180
Author(s):  
Edward K. Chapnick ◽  
Jeremy D. Gradon ◽  
Barry Kreiswirth ◽  
Larry I. Lutwick ◽  
Benjamin C. Schaffer ◽  
...  

AbstractThe in vitro activities of bacitracin and mupirocin were compared for seven different strains of methicillin-resistant Staphylococcus aureus. Six of seven strains showed bacitracin minimum inhibitory concentrations (MICs) of 0.5 to 1.0 units/mL, and all seven had mupirocin MICs of 0.5 to 2 μg/mL. Time-kill studies revealed 2.6- to 4.5-log reduction in 24 hours with strains susceptible to bacitracin (4 units/mL) and 0 to 2.2 reduction with mupirocin (16 μg/mL). Bacitracin should be considered further for in vivo studies because of enhanced bacteriocidal effect and lower cost.


Sign in / Sign up

Export Citation Format

Share Document