scholarly journals A brief comparative examination of tangent hyperbolic hybrid nanofluid through a extending surface: numerical Keller–Box scheme

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wasim Jamshed ◽  
M. Prakash ◽  
S. Suriya Uma Devi ◽  
Rabha W. Ibrahim ◽  
Faisal Shahzad ◽  
...  

AbstractA novel hybrid nanofluid was explored in order to find an efficient heat-transmitting fluid to replace standard fluids and revolutionary nanofluids. By using tangent hyperbolic hybrid combination nanoliquid with non-Newtonian ethylene glycol (EG) as a basis fluid and a copper (Cu) and titanium dioxide (TiO2) mixture, this work aims to investigate the viscoelastic elements of the thermal transferring process. Flow and thermal facts, such as a slippery extended surface with magnetohydrodynamic (MHD), suction/injection, form factor, Joule heating, and thermal radiation effects, including changing thermal conductivity, were also integrated. The Keller–Box method was used to perform collective numerical computations of parametric analysis using governing equivalences. In the form of graphs and tables, the results of TiO2–Cu/EG hybrid nanofluid were compared to those of standard Cu/EG nanofluid in important critical physical circumstances. The entropy generation study was used to examine energy balance and usefulness for important physically impacting parameters. Detailed scrutiny on entropy development get assisted with Weissenberg number, magnetic parameter, fractional volumes, injection parameter, thermal radiation, variable thermal conductivity, Biot number, shape variation parameter, Reynolds and Brinkman number. Whereas the entropy gets resisted for slip and suction parameter. In this case, spotted entropy buildup with important parametric ranges could aid future optimization.

Author(s):  
Mazmul Hussain ◽  
Nargis Khan

The variable nature of the thermal conductivity of nanofluid with respect to temperature plays an important role in many engineering and industrial applications including solar collectors and thermoelectricity. Thus, the foremost motivation of this article is to investigate the effects of thermal conductivity and electric conductivity due to variable temperature on the flow of Williamson nanofluid. The flow is considered between two stretchable rotating disks. The mathematical modeling and analysis have been made in the presence of magnetohydrodynamic and thermal radiation. The governing differential equations of the problem are transformed into non-dimensional differential equations by using similarity transformations. The transformed differential equations are thus solved by a finite difference method. The behaviors of velocity, temperature and concentration profiles due to various parameters are discussed. For magnetic parameter, the radial and tangential velocities have showed decreasing behavior, while converse behavior is observed for axial velocity. The temperature profile shows increasing behavior due to an increase in the Weissenberg number, heat generation parameter and Eckert number, while it declines by increasing electric conductivity parameter. The nanoparticle concentration profile declines due to an increase in the Lewis number and Reynolds number.


2021 ◽  
Vol 15 ◽  
pp. 12-21
Author(s):  
Jonatas Motta Quirino ◽  
Eduardo Dias Correa ◽  
Rodolfo do Lago Sobral

- The present work describes the thermal profile of a single dissipation fin, where their surfaces reject heat to the environment. The problem happens in steady state, which is, all the analysis occurs after the thermal distribution reach heat balance considering that the fin dissipates heat by conduction, convection and thermal radiation. Neumann and Dirichlet boundary conditions are established, characterizing that heat dissipation occurs only on the fin faces, in addition to predicting that the ambient temperature is homogeneous. Heat transfer analysis is performed by computational simulations using appropriate numerical methods. The most of solutions in the literature consider some simplifications as constant thermal conductivity and linear boundary conditions, this work addresses this subject. The method applied is the Kirchhoff Transformation, that uses the thermal conductivity variation to define the temperatures values, once the thermal conductivity variate as a temperature function. For the real situation approximation, this work appropriated the silicon as the fin material to consider the temperature function at each point, which makes the equation that governs the non-linear problem. Finally, the comparison of the results obtained with typical results proves that the assumptions of variable thermal conductivity and heat dissipation by thermal radiation are crucial to obtain results that are closer to reality.


Author(s):  
Hassan Waqas ◽  
Faisal Fareed Bukhari ◽  
Taseer Muhammad ◽  
Umar Farooq

In this research, thermal radiation, entropy generation and variable thermal conductivity effects on hybrid nanofluids by moving sheet are analyzed. The liquid is placed by stretchable flat wall that is flowing in a nonlinear pattern. Thermal conductivity changes with temperature governed by thermal radiation and MHD is incorporated. Approximations of boundary layer correspond to a set of PDEs which are then changed into ODEs by considering suitable variables. The resulting ODEs are solved using the bvp4c method. The implication with considerable physical characteristics on temperature, entropy generation and velocity profile is graphically represented and numerically discussed. Entropy generation increases for increasing Reynolds number, velocity slip parameter, Brinkman number and magnetic parameter. Scientists have recently established a rising interest in the importance of nanoparticles due to their numerous technical, industrial and commercial uses. The provided insights can be used in extrusion application areas, macromolecules, biomimetic systems, energy production and industrial process improvements.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3379-3390 ◽  
Author(s):  
Zaheer Abbas ◽  
Muhammad Imran ◽  
Muhammad Naveed

The study depicts the variations in the hydromagnetics flow of a Careau fluid in a semi permeable curved channel with convective boundary condition. Furthermore, Rosseland approximation is also considered to analyze the non-linear thermal radiation effects. Curvilinear co-ordinates system has been adopted for the mathematical modeling of the flow equations. The attained set of governing equation are then converted into non-linear dimensionless differential equations, by making use of similarity variables which are later treated by shooting method. In addition, the Newton?s Raphson method is also incepted to improve the accuracy of the obtained numerical result. The velocity field and temperature distributions are affected by various involved parameter which are presented in graphs and in table form. It is noticed that the velocity profiles are influenced by the change in the Weissenberg number.


Sign in / Sign up

Export Citation Format

Share Document