scholarly journals Improved HbA1c and reduced glycaemic variability after 1-year intermittent use of flash glucose monitoring

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenhui Zhang ◽  
Yu Liu ◽  
Baosheng Sun ◽  
Yanjun Shen ◽  
Ming Li ◽  
...  

AbstractFlash glucose monitoring (FGM) was introduced in China in 2016, and it might improve HbA1c measurements and reduce glycaemic variability during T1DM therapy. A total of 146 patients were recruited from October 2018 to September 2019 in Liaocheng. The patients were randomly divided into the FGM group or self-monitoring blood glucose (SMBG) group. Both groups wore the FGM device for multiple 2-week periods, beginning with the 1st, 24th, and 48th weeks for gathering data, while blood samples were also collected for HbA1c measurement. Dietary guidance and insulin dose adjustments were provided to the FGM group patients according to their Ambulatory Glucose Profile (AGP) and to the SMBG group patients according to their SMBG measurements taken 3–4 times daily. All of the participants underwent SMBG measurements on the days when not wearing the FGM device. At the final visit, HbA1c, time in range (TIR), duration of hypoglycaemia and the number of diabetic ketoacidosis (DKA) events were taken as the main endpoints. There were no significant difference in the baseline characteristics of the two groups. At 24 weeks, the HbA1c level of the FGM group was 8.16 ± 1.03%, which was much lower than that of the SMBG group (8.68 ± 1.01%) (p = 0.003). The interquartile range (IQR), mean blood glucose (MBG), and the duration of hypoglycaemia in the FGM group also showed significant declines, compared with the SMBG group (p < 0.05), while the TIR increased in the FGM group [(49.39 ± 17.54)% vs (42.44 ± 15.49)%] (p = 0.012). At 48 weeks, the differences were more pronounced (p < 0.01). There were no observed changes in the number of episodes of DKA by the end of the study [(0.25 ± 0.50) vs (0.28 ± 0.51), p = 0.75]. Intermittent use of FGM by T1DM patients can improve their HbA1c and glycaemic control without increasing the hypoglycaemic exposure in insulin-treated individuals with type 1 diabetes in an developing country.

2020 ◽  
Vol 8 (1) ◽  
pp. e001115 ◽  
Author(s):  
Eri Wada ◽  
Takeshi Onoue ◽  
Tomoko Kobayashi ◽  
Tomoko Handa ◽  
Ayaka Hayase ◽  
...  

IntroductionThe present study aimed to evaluate the effects of flash glucose monitoring (FGM) and conventional self-monitoring of blood glucose (SMBG) on glycemic control in patients with non-insulin-treated type 2 diabetes.Research design and methodsIn this 24-week, multicenter, open-label, randomized (1:1), parallel-group study, patients with non-insulin-treated type 2 diabetes at five hospitals in Japan were randomly assigned to the FGM (n=49) or SMBG (n=51) groups and were provided each device for 12 weeks. The primary outcome was change in glycated hemoglobin (HbA1c) level, and was compared using analysis of covariance model that included baseline values and group as covariates.ResultsForty-eight participants in the FGM group and 45 in the SMBG group completed the study. The mean HbA1c levels were 7.83% (62.1 mmol/mol) in the FGM group and 7.84% (62.2 mmol/mol) in the SMBG group at baseline, and the values were reduced in both FGM (−0.43% (−4.7 mmol/mol), p<0.001) and SMBG groups (−0.30% (−3.3 mmol/mol), p=0.001) at 12 weeks. On the other hand, HbA1c was significantly decreased from baseline values in the FGM group, but not in the SMBG group at 24 weeks (FGM: −0.46% (−5.0 mmol/mol), p<0.001; SMBG: −0.17% (−1.8 mmol/mol), p=0.124); a significant between-group difference was also observed (difference −0.29% (−3.2 mmol/mol), p=0.022). Diabetes Treatment Satisfaction Questionnaire score was significantly improved, and the mean glucose levels, SD of glucose, mean amplitude of glycemic excursions and time in hyperglycemia were significantly decreased in the FGM group compared with the SMBG group.ConclusionsGlycemic control was better with FGM than with SMBG after cessation of glucose monitoring in patients with non-insulin-treated type 2 diabetes.Trial registration numberUMIN000026452, jRCTs041180082.


2019 ◽  
Vol 14 (2) ◽  
pp. 130-132 ◽  
Author(s):  
Nicole D. White ◽  
Emily Knezevich

Individuals with diabetes play a significant role in the control of their condition by participating in their own care. Self-monitoring of blood glucose is of particular importance in maintaining adequate glycemic control but when obtained using traditional fingerstick methods, is often limited with by cost, fear of needles or pain and inconvenience. Flash glucose monitoring is an innovative technology available to address these barriers and help people with diabetes better manage their blood glucose levels. Data demonstrating increased frequency in glucose monitoring, patient perspectives related to self-care behaviors, and implications for practice and future research are described.


2012 ◽  
Vol 08 (01) ◽  
pp. 27 ◽  
Author(s):  
Susana R Patton ◽  
Mark A Clements ◽  
◽  

Glucose monitoring is essential for modern diabetes treatment and the achievement of near-normal glycemic levels. Monitoring of blood glucose provides the data necessary for patients to make daily management decisions related to food intake, insulin dose, and physical exercise and it can enable patients to avoid potentially dangerous episodes of hypo- and hyperglycemia. Additionally, monitoring can provide healthcare providers with the information needed to identify glycemic patterns, educate patients, and adjust insulin. Presently, youth with type 1 diabetes can self-monitor blood glucose via home blood glucose meters, or monitor glucose concentrations nearly continuously using a continuous glucose monitor. There are advantages and disadvantages to the use of either of these technologies. This article describes the two technologies and the research supporting their use in the management of youth with type 1 diabetes in order to weigh their relative pros and cons.


2020 ◽  
Vol 11 (5) ◽  
pp. 1222-1229 ◽  
Author(s):  
Naru Babaya ◽  
Shinsuke Noso ◽  
Yoshihisa Hiromine ◽  
Yasunori Taketomo ◽  
Fumimaru Niwano ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Bingyan Cao ◽  
Rui Wang ◽  
Chunxiu Gong ◽  
Di Wu ◽  
Chang Su ◽  
...  

Aims. To evaluate the performance of a factory-calibrated flash glucose monitoring system in children with diabetes compared to venous blood glucose (BG). Methods. A total of 13 hospitalized participants newly diagnosed with type 1 diabetes, aged 1~14 years old, were involved in the study. Sensor glucose measurements on days 2, 3, 6, 7, 12, and 13 of wear were compared with venous BG. During these days, the venous BG results were obtained either 4 or 7 times per day. Results. The accuracy was evaluated against venous BG, with 469 of 469 (100.0%) sensor and venous BG pairs within consensus error grid zones A and B, including 94.7% in zone A. The overall mean absolute relative difference (MARD) was 11.67%. The MARD of blood glucose lower than 4.0 mmol/L (MARD=16.89%) was higher than blood glucose between 4 and 10 mmol/L (MARD=11.58%) and blood glucose higher than 10 mmol/L (MARD=7.79%). Compared to venous BG, the MARDs of wear days 2, 3, 6, 7, 12, and 13 were 11.53%, 9.66%, 11.79%, 10.89%, 13.18%, and 13.92%, respectively, with no statistically significant difference (P=0.25). The median ARD was highest when the glucose decreased >0.11 mmol/L/min (20.27%) and lower than 10.00% when the glucose changed between 0.06 and 0.11 mmol/L/min, changed <0.06 mmol/L/min, and increased >0.11 mmol/L/min. Conclusions. The accuracy of the system is good and remains stable over 14 days of wear; however, the accuracy depends on the glucose level and rates of glucose concentration changes.


2019 ◽  
Vol 16 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Ramzi A Ajjan ◽  
Neil Jackson ◽  
Scott A Thomson

Aim: Analyse the effects of professional flash glucose monitoring system (FreeStyle Libre Pro™) on glycaemic control in insulin-treated type 2 diabetes. Methods: Primary (n = 17) and secondary care centres (n = 5) randomised 148 type 2 diabetes patients into three groups: (A) self-monitoring of blood glucose (n = 52), (B) self-monitoring of blood glucose and two Libre Pro sensor wears (n = 46) or (C) self-monitoring of blood glucose and four sensor wears (n = 50). Primary endpoint was time in range (glucose 3.9–10 mmol/L) within group C comparing baseline with days 172–187. Predefined secondary endpoints included HbA1c, hypoglycaemia and quality of life measures analysed within and between groups (clinicaltrials.gov, NCT02434315). Results: In group C, time in range in the first 14 days (baseline) and days 172–187 was similar at 15.0 ± 5.0 and 14.1 ± 4.7 h/day (mean ± SD), respectively, (p = 0.1589). In contrast, HbA1c reduced from baseline to study end within group C by 4.9 ± 8.8 mmol/mol (0.44% ± 0.81%; p = 0.0003). HbA1c was also lower in group C compared with A at study end by 5.4 ± 1.79 mmol/mol (0.48% ± 0.16%; p = 0.0041, adjusted mean ± SE), without increased time in hypoglycaemia ( p = 0.1795). Treatment satisfaction scores improved in group C compared with A ( p = 0.0225) and no device-related serious adverse events were reported. Conclusions: Libre Pro can improve HbA1c and treatment satisfaction without increasing hypoglycaemic exposure in insulin-treated type 2 diabetes individuals managed in primary/secondary care centres.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e050713
Author(s):  
Emma G Wilmot ◽  
Mark Evans ◽  
Katharine Barnard-Kelly ◽  
M Burns ◽  
Iain Cranston ◽  
...  

IntroductionOptimising glycaemic control in type 1 diabetes (T1D) remains challenging. Flash glucose monitoring with FreeStyle Libre 2 (FSL2) is a novel alternative to the current standard of care self-monitoring of blood glucose (SMBG). No randomised controlled trials to date have explored the potential benefits of FSL2 in T1D. We aim to assess the impact of FSL2 in people with suboptimal glycaemic control T1D in comparison with SMBG.MethodsThis open-label, multicentre, randomised (via stochastic minimisation), parallel design study conducted at eight UK secondary and primary care centres will aim to recruit 180 people age ≥16 years with T1D for >1 year and glycated haemoglobin (HbA1c) 7.5%–11%. Eligible participants will be randomised to 24 weeks of FSL2 (intervention) or SMBG (control) periods, after 2-week of blinded sensor wear. Participants will be assessed virtually or in-person owing to the COVID-19 pandemic. HbA1c will be measured at baseline, 12 and 24 weeks (primary outcome). Participants will be contacted at 4 and 12 weeks for glucose optimisation. Control participants will wear a blinded sensor during the last 2 weeks. Psychosocial outcomes will be measured at baseline and 24 weeks. Secondary outcomes include sensor-based metrics, insulin doses, adverse events and self-report psychosocial measures. Utility, acceptability, expectations and experience of using FSL2 will be explored. Data on health service resource utilisation will be collected.AnalysisEfficacy analyses will follow intention-to-treat principle. Outcomes will be analysed using analysis of covariance, adjusted for the baseline value of the corresponding outcome, minimisation factors and other known prognostic factors. Both within-trial and life-time economic evaluations, informed by modelling from the perspective of the National Health Service setting, will be performed.EthicsThe study was approved by Greater Manchester West Research Ethics Committee (reference 19/NW/0081). Informed consent will be sought from all participants.Trial registration numberNCT03815006.Protocol version4.0 dated 29 June 2020.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e040648
Author(s):  
Nanna Lind ◽  
Dorte Lindqvist Hansen ◽  
Signe Sætre Rasmussen ◽  
Kirsten Nørgaard

IntroductionMedical treatment options for type 2 diabetes (T2D) have increased over the last decade and enhance the possibility of individualised treatment strategies where insulin is still one of them. In spite of the advancements in treatment options, less than one-third of the population with T2D obtain their optimal glycaemic goal. In persons with type 1 diabetes, continuous glucose monitoring (CGM) has shown to be the most important driver for improvement in glycaemic control, even more than insulin-pump therapy. The use of technology in T2D has only been investigated in few studies.The overall objective of the research study is to examine the effectiveness of the use of CGM versus self-monitoring of blood glucose (SMBG) in persons with insulin-treated T2D on glycaemic variables and patient-reported outcomes on treatment satisfaction, health behaviour and well-being. The independent effect of peer support will also be studied.Methods and analysisThe study is a single centre, prospective, randomised, open-labelled, three-armed study with the randomisation 2:1:2 in group A with CGM, group B with CGM and peer support, and group C as a control group with SMBG. The participants receive a training course unique for the allocation group. The study runs for 12 months and includes 100 adult participants with insulin-treated T2D, treated at the outpatient clinic at Steno Diabetes Center Copenhagen. Primary outcome is difference in change in time in range. Recruitment begins in August 2020 and ends in July 2021. Final 12-month follow-up is anticipated to be in August 2022.Ethics and disseminationThe study will be carried out in accordance with the Helsinki Declaration and is approved by the Scientific Ethics Committee of the Capital Region (H-20000843). Data collection and handling will be performed in accordance with the General Data Protection Regulation and is approved by the Danish Data Protection Agency (J-2020-100). Dissemination will be in international peer-reviewed journals, conferences and a plain-language summary for participants.Trial registration numberClinicalTrials.gov Registry (NCT04331444).Protocol versionV.3, 11 December 2020.


Sign in / Sign up

Export Citation Format

Share Document