scholarly journals Mapping silver eel migration routes in the North Sea

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pieterjan Verhelst ◽  
Jan Reubens ◽  
Johan Coeck ◽  
Tom Moens ◽  
Janek Simon ◽  
...  

AbstractRecent developments in tracking technology resulted in the mapping of various marine spawning migration routes of the European eel (Anguilla anguilla). However, migration routes in the North Sea have rarely been studied, despite many large European rivers and hence potential eel growing habitat discharge into the North Sea. In this study, we present the most comprehensive map to date with migration routes by silver European eels in the North Sea and document for the first time successful eel migration through the English Channel. Migration tracks were reconstructed for 42 eels tagged in Belgium and 12 in Germany. Additionally, some eels moved up north to exit the North Sea over the British Isles, confirming the existence of two different routes, even for eels exiting from a single river catchment. Furthermore, we observed a wide range in migration speeds (6.8–45.2 km day−1). We hypothesize that these are likely attributed to water currents, with eels migrating through the English Channel being significantly faster than eels migrating northward.

2016 ◽  
Vol 554 ◽  
pp. 257-262 ◽  
Author(s):  
J Huisman ◽  
P Verhelst ◽  
K Deneudt ◽  
P Goethals ◽  
T Moens ◽  
...  

Author(s):  
J. N. Carruthers

In July–August of three different years common surface-floating bottles were set adrift at International Station E2 (49° 27' N.—4° 42' W.). With them, various types of drag-fitted bottles were also put out. The journeys accomplished are discussed, and the striking differences as between year and year in the case of the common surface floaters, and as between the different types in the same year, are commented upon in the light of the prevailing winds. An inter-relationship of great simplicity is deduced between wind speed and the rate of travel of simple surface floating bottles up-Channel and across the North Sea from the results of experiments carried out in four different summers.


1963 ◽  
Vol 20 (3) ◽  
pp. 789-826 ◽  
Author(s):  
B. McK. Bary

Monthly temperature-salinity diagrams for 1957 have demonstrated that three surface oceanic "water bodies" were consistently present in the eastern North Atlantic; two are regarded as modified North Atlantic Central water which give rise to the third by mixing. As well in the oceanic areas, large and small, high or low salinity patches of water were common. Effects of seasonal climatic fluctuations differed in the several oceanic water bodies. In coastal waters, differences in properties and in seasonal and annual cycles of the properties distinguish the waters from the North Sea, English Channel and the western entrance to the Channel.The geographic distributions of the oceanic waters are consistent with "northern" and "southern" water bodies mixing to form a "transitional" water. Within this distribution there are short-term changes in boundaries and long-term (seasonal) changes in size of the water bodies.Water in the western approaches to the English Channel appeared to be influenced chiefly by the mixed, oceanic transitional water; oceanic influences in the North Sea appear to have been from northern and transitional waters.


1906 ◽  
Vol 10 (40) ◽  
pp. 50-51

No fewer than seven nations tried to win the Gordon Bennett Cup in the race which started from the Tuileries Gardens, in Paris, on September 30th. But the wind was in an unfavourable direction for the accomplishment of a long distance record. To some, the English Channel barred the way, to some, the North Sea.The cup offered for the greatest distance covered has been accorded to the American aeronaut, Mr. Frank P. Lahm, who descended 15 miles north of Scarborough.It will be seen in another part of this Journal that in December next, Members of the Aëronautical Society of Great Britain will hear an account of the Gordon-Bennett race from Colonel J. E. Capper, who took part in the race, having accompanied Mr. Rolls in the “ Britannia.” In this account, therefore, it will suffice to merely tabulate the competitors and results.


2008 ◽  
Vol 26 ◽  
Author(s):  
Bror Jonsson ◽  
Nina Jonsson

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:HyphenationZone>21</w:HyphenationZone> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--><!--[if !mso]><object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object> <mce:style><! st1\:*{behavior:url(#ieooui) } --> <!--[endif] --> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Vanlig tabell"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif] --><span style="font-size: small;"><span style="font-family: Times New Roman;"><span style="font-size: 10pt; font-family: Arial;" lang="EN-GB"><span style="font-family: TimesNewRomanPSMT; mso-ansi-language: EN-GB; mso-bidi-font-family: TimesNewRomanPSMT;">Two individuals of thinlip grey mullet </span><span style="font-family: TimesNewRomanPS-ItalicMT; mso-ansi-language: EN-GB; mso-bidi-font-style: italic; mso-bidi-font-family: TimesNewRomanPS-ItalicMT;"><em>Liza ramada </em></span><span style="font-family: TimesNewRomanPSMT; mso-ansi-language: EN-GB; mso-bidi-font-family: TimesNewRomanPSMT;">were collected in a southern Norwegian brook (58° 22’ N, 8° 37’ E) on 12th September 2007. The fish were 8.7 and 9.0 cm in total length, 6 and 7 g in total mass, and most probably in their first year of life. The nearest known spawning area of the species is south of the English Channel, meaning that they had probably moved at least 900 km across the North Sea during their first growth season. To our knowledge, this is the first published observation of the catadromous thinlip grey mullet from a Scandinavian freshwater course.</span></span></span></span>


2020 ◽  
Author(s):  
Oceana ◽  
Helena Álvarez ◽  
Allison L. Perry ◽  
Jorge Blanco ◽  
Silvia Garcia ◽  
...  

To help fill gaps in knowledge about marine biodiversity in the North Sea, Oceana carried out two eight week research expeditions, in 2016 and 2017. Oceana’s surveys documented a wide range of habitats and species that are considered priorities for conservation, under national, EU, and international frameworks that recognise them as threatened and/or establish legal requirements for their protection.Oceana’s research has underscored the fact that much remains to be discovered about marine life on the seabed of the North Sea. Continued research is critical for informing efforts to recover biodiversity, an urgent priority in the face of the multiple, intense pressures facing the North Sea’s marine habitats and species.


Author(s):  
J. N. Carruthers

In July, 1924, 250 floating, and an equal number of bottom-trailing, bottles were put out at selected places in the western English Channel. Fifty of each type were put out at each of the two routine Stations E2 and E3, and the same number was “liberated” at each of three selected stretches along the steamship route from Southampton to St. Malo. Those surface bottles, which did not strand locally, travelled rapidly up Channel towards the North Sea and across it. Many bottles arrived in the Skager-Rack after performing their journey of some 700 miles at the rate of 6 miles a day and more. An adequate study of wind conditions, as recorded at several stations along the length of the Channel and at one station in the southern North Sea, revealed the fact that there was, for some 5½ months (counting from the time of liberation of the bottles), an almost uninterrupted predominance of south-westerly winds—as recorded at all stations considered. The whole area of the Channel was swept by south-westerly winds of average speed of some 9 miles a day for at least 5½ months subsequent to the time of putting out of the bottles. July, 1924, had (according to the Falmouth Observatory records) the largest proportion of westerly winds experienced for 54 years; 20 days of this month had winds with westerly components. The association of the unusually persistent westerly winds with the rapid travel of surface bottles towards and across the North Sea is interesting.


Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 315-335 ◽  
Author(s):  
Robert Marsh ◽  
Ivan D. Haigh ◽  
Stuart A. Cunningham ◽  
Mark E. Inall ◽  
Marie Porter ◽  
...  

Abstract. The European Slope Current provides a shelf-edge conduit for Atlantic Water, a substantial fraction of which is destined for the northern North Sea, with implications for regional hydrography and ecosystems. Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988–2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely recruited from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25–50 % reductions of these density gradients over 1996–1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10–40 % of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a general decline in this percentage over 1988–2007. Salinities in the Slope Current correspondingly decreased, evidenced in ocean analysis data. Further to the north, in the Atlantic Water conveyed by the Slope Current through the Faroe–Shetland Channel (FSC), salinity is observed to increase over this period while declining in the hindcast. The observed trend may have broadly compensated for a decline in the Atlantic inflow, limiting salinity changes in the northern North Sea during this period. Proxies for both Slope Current transport and Atlantic inflow to the North Sea are sought in sea level height differences across the FSC and between Shetland and the Scottish mainland (Wick). Variability of Slope Current transport on a wide range of timescales, from seasonal to multi-decadal, is implicit in sea level differences between Lerwick (Shetland) and Tórshavn (Faroes), in both tide gauge records from 1957 and a longer model hindcast spanning 1958–2012. Wick–Lerwick sea level differences in tide gauge records from 1965 indicate considerable decadal variability in the Fair Isle Current transport that dominates Atlantic inflow to the northwest North Sea, while sea level differences in the hindcast are dominated by strong seasonal variability. Uncertainties in the Wick tide gauge record limit confidence in this proxy.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 151-186 ◽  
Author(s):  
M. Wilkinson ◽  
R. S. Haszeldine ◽  
A. E. Fallick

AbstractThe principal clays of the northern and central North Sea are illite (sometimes with interlayered smectite) and kaolin. Chlorite is only locally important. Although it has been proposed that kaolin within North Sea sandstones is detrital in origin, the majority of workers have concluded that it is authigenic, largely the product of feldspar alteration. Kaolin is found within a wide range of sedimentary settings (and within shales) apparently defying the notion that kaolin is an indicator of meteoric water deposition. Within sandstones, the earliest authigenic kaolin has a vermiform morphology, the distribution of which is controlled by the availability of detrital mica to act as a nucleus, and the composition of the post-depositional porewaters. This vermiform kaolin formed in meteoric water, the presence of which is easily accounted for below sub-aerial exposure surfaces in non-marine formations, and below unconformities over marine units. In fully marine sands, and even marine shale units, kaolin still occurs. It has therefore been suggested that even these locations have been flushed with meteoric water.Early vermiform kaolin recrystallizes to a more blocky morphology as burial proceeds, at least in the Brent Group. Blocky kaolin has been reported as growing before, synchronously with, and after the formation of quartz overgrowths, though oxygen isotope studies support low-temperature growth, pre-quartz. Blocky kaolin may form during meteoric flushing associated with lower Cretaceous uplift and erosion, though it is found in fault blocks that are thought to have remained below sea level. Here, the kaolin may form in stagnant meteoric water, relics of the post-depositional porewater. It has also been proposed that the blocky kaolin grew in ascending basinal waters charged with carboxylic acids and CO2, though this hypothesis is not supported by stable oxygen isotope data. Some of the blocky kaolin is dickite, the stable polymorph above ∼100°C.Fibrous illite occurs almost ubiquitously within the clastic sediments of the North Sea. An early pore-lining phase has been interpreted as both infiltrated clastic clay, and as an early diagenetic phase. Early clays may have been quite smectite-rich illites, or even discrete smectites. Later, fibrous illite is undoubtedly neoformed, and can degrade reservoir quality significantly. Both within sandstones and shales, there is an apparent increase in the K content deeper than 4 km of burial, which could be due to dilution of the early smectite-rich phase by new growth illite, or to the progressive illitization of existing I-S. Much of the ‘illite’ that has been dated by the K-Ar method may therefore actually be I-S.The factors that control the formation of fibrous illite are only poorly known, though temperature must play a role. Illite growth has been proposed for almost the entire range of diagenetic temperatures (e.g. 15–20°C, Brent Group; 35–40°C, Oxfordian Sand, Inner Moray Firth; 50–90°C, Brae formation; 100–110°C, Brent Group; 130–140°C, Haltenbanken). It seems unlikely that there is a threshold temperature below which illite growth is impossible (or too slow to be significant), though this is a recurring hypothesis in the literature. Instead, illite growth seems to be an event, commonly triggered by oil emplacement or another change in the physiochemical conditions within the sandstone, such as an episode of overpressure release. Hence fibrous illite can grow at any temperature encountered during diagenesis.Although there is an extensive dataset of K-Ar ages of authigenic illites from the Jurassic of the North Sea, there is no consensus as to whether the data are meaningful, or whether the purified illite samples prepared for analysis are so contaminated with detrital phases as to render the age data meaningless. At present it is unclear about how to resolve this problem, though there is some indication that chemical micro-analysis could help. It is a common belief that illite ages record the timing of oil charge, and so can be used to calibrate basin models.Grain-coating Fe-rich chlorite cements can preserve exceptional porosity during burial. They are found in marginal marine sandstones, formed during diagenesis from precursor Fe-rich clays such as berthierine or verdine.


Sign in / Sign up

Export Citation Format

Share Document