scholarly journals Controllable shifting, steering, and expanding of light beam based on multi-layer liquid-crystal cells

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Urban Mur ◽  
Miha Ravnik ◽  
David Seč

AbstractShaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on multi-layer liquid-crystal cells and external electric field, capable of extended beam shifting, steering, and expanding, using a combination of theory and full numerical modelling, both for liquid crystal orientations and the transmitted light. Specifically, by exploiting three different function-specific and tunable birefringent nematic layers, we show an effective liquid-crystal beam control device, capable of precise control of outgoing light propagation, with possible application in projectors or automotive headlamps.

2021 ◽  
Author(s):  
Esteban Aguilera ◽  
Marcel G. Clerc ◽  
Valeska Zambra

Abstract Multistable systems are characterized by exhibiting domain coexistence, where each domain accounts for the different states. In the case of these systems are described by vectorial fields, domains are connected through topological defects. Vortices are one of the most frequent and studied topological defect points. Optical vortices are equally relevant for their fundamental features as beams with topological features and their applications in image processing, telecommunications, optical tweezers, and quantum information. The interaction of light beams with matter vortices in liquid crystal cells is a natural source of optical vortices. The rhythms that govern the emergence of matter vortexes due to fluctuations are not established. Here we investigate the nucleation mechanisms of the matter vortices in liquid crystal cells and establish statistical laws that govern them. Based on a stochastic amplitude equation, the law for the number of nucleated vortices as a function of anisotropy, voltage, and noise level intensity is set. Experimental observations in a nematic liquid crystal cell with homeotropic anchoring and a negative anisotropic dielectric constant under the influence of a transversal electric field show a fair agreement with the theoretical findings.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. F. Algorri ◽  
P. Morawiak ◽  
D. C. Zografopoulos ◽  
N. Bennis ◽  
A. Spadlo ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7553
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Katarzyna Garbat ◽  
Leszek R. Jaroszewicz

This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths.


2018 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Mazen Nairat

Both linear and angular momentum densities of Bessel, Gaussian-Bessel, and Hankel-Bessel lasers are determined. Angular momentum of the three Bessel beams is illustrated at linear and circular polarization. Axial Angular momentum is resolved in particular interpretation: the harmonic order of the physical light momentum. Full Text: PDF ReferencesG. Molina-Terriza, J. Torres, and L. Torner, "Twisted photons", Nature Physics 3, 305 - 310 (2007). CrossRef J Arlt, V Garces-Chavez, W Sibbett, and K Dholakia "Optical micromanipulation using a Bessel light beam", Opt. Commun., 197, 4-6, (2001). CrossRef L. Ambrosio and H. Hernández-Figueroa, "Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime", Opt Exp, 18, 23 (2010). CrossRef I. Litvin, A. Dudley and A. Forbes, "Poynting vector and orbital angular momentum density of superpositions of Bessel beams", Opt Exp, 19, 18 (2011). CrossRef K Volke-Sepulveda, V Garcés-Chávez, S Chávez-Cerda, J Arlt and K Dholakia "Orbital angular momentum of a high-order Bessel light beam" , JOP B 4 (2). 2002. CrossRef M. Verma, S. Pal, S. Joshi, P. Senthilkumaran, J. Joseph, and H Kandpal, "Singularities in cylindrical vector beams", Jou. of Mod. Opt., 62 (13), 2015. CrossRef R. Borghi, M. Santarsiero, and M. Porras, "Nonparaxial Bessel?Gauss beams", J. Opt. Soc. Am. A, 18 (7) (2011). CrossRef L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes", Phys Rev A, 45 (11): 8185-8189 (1992). CrossRef D. Mcglion and K. Dholakia, "Bessel beams: diffraction in a new light", Cont. Phys, 46(1) 15 ? 28. (2005). CrossRef F. Gori, G. Guattari and C. Padovani," Bessel-Gauss Beams", Opt. Commun., 64, 491, (1987). CrossRef V. Kotlyar, A. Kovalev, and A. Soifer, "Hankel?Bessel laser beams" J. Opt. Soc. Am. A, 29 (5) (2012). CrossRef L. Allen and M. Babiker "Spin-orbit coupling in free-space Laguerre-Gaussian light beams", Phys. Rev. A 53, R2937. CrossRef


2014 ◽  
Vol 118 (2) ◽  
pp. 323-332 ◽  
Author(s):  
E. V. Aksenova ◽  
B. B. Divinskii ◽  
A. A. Karetnikov ◽  
N. A. Karetnikov ◽  
A. P. Kovshik ◽  
...  

2015 ◽  
Vol 13 (3) ◽  
pp. 163-169
Author(s):  
S. Kuzmanovic ◽  
A. Mancic ◽  
M. Stojanovic-Krasic

In this paper we investigated numerically light beam propagation through a one-dimensional composite photonic lattice composed of two structurally different lattices, with a geometric defect emerging at the interface between the two of them. Depending on the initial light beam position with respect to the geometric defect and the transverse tilt of the input beam, different dynamical regimes have been identified. Presented results may be useful for different applications, such as blocking, filtering and transporting light beams through optical media.


2006 ◽  
Vol 14 (4) ◽  
Author(s):  
J. Beeckman ◽  
K. Neyts ◽  
X. Hutsebaut ◽  
M. Haelterman

AbstractIn this work we present the observation of spatial optical solitons in liquid crystal cells by recording the diffraction pattern of the out-coupled beam on a distant screen. Simultaneously, the light propagation is observed via scattering measurements. The most important observation is displacement of the beam on the screen due to the transverse undulation inside the cell. This undulation is caused by the anisotropic walk-off of the beam. The displacement is in good agreement with the values of the undulation earlier reported.


2005 ◽  
Vol 37 (1-3) ◽  
pp. 95-106 ◽  
Author(s):  
Jeroen Beeckman ◽  
Kristiaan Neyts ◽  
Xavier Hutsebaut ◽  
Cyril Cambournac ◽  
Marc Haelterman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Netanel Biton ◽  
Judy Kupferman ◽  
Shlomi Arnon

AbstractA major challenge in use of the optical spectrum for communication and imaging applications is the scattering of light as it passes through diffuse media. Recent studies indicate that light beams with orbital angular momentum (OAM) can penetrate deeper through diffuse media than simple Gaussian beams. To the best knowledge of the authors, in this paper we describe for the first time an experiment examining transmission of OAM beams through biological tissue with thickness of up to a few centimeters, and for OAM modes reaching up to 20. Our results indicate that OAM beams do indeed show a higher transmittance relative to Gaussian beams, and that the greater the OAM, the higher the transmittance also up to 20, Our results extend measured results to highly multi scattering media and indicate that at 2.6 cm tissue thickness for OAM of order 20, we measure nearly 30% more power in comparison to a Gaussian beam. In addition, we develop a mathematical model describing the improved permeability. This work shows that OAM beams can be a valuable contribution to optical wireless communication (OWC) for medical implants, optical biological imaging, as well as recent innovative applications of medical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document