scholarly journals Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard B. Gillis ◽  
Hodaya V. Solomon ◽  
Lata Govada ◽  
Neil J. Oldham ◽  
Vlad Dinu ◽  
...  

AbstractThis study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.26 Å. Crystals belonged to the H3 space group with hexagonal (centred trigonal) cell dimensions a = b = 82.44 and c = 33.65 Å with two molecules in the asymmetric unit. A unique position of D21Glu, not present in other fast-acting analogues, pointing inwards rather than to the outside surface was observed. This reduces interactions with neighbouring molecules thereby increasing preference of the dimer form. Sedimentation velocity/equilibrium studies revealed a trinary system of dimers and hexamers/dihexamers in dynamic equilibrium. This new information may lead to better understanding of the pharmacokinetic and pharmacodynamic behaviour of glulisine which might aid in improving formulation regarding its fast-acting role and reducing side effects of this drug.

2002 ◽  
Vol 30 (4) ◽  
pp. 521-525 ◽  
Author(s):  
O. S. Makin ◽  
L. C. Serpell

The pathogenesis of the group of diseases known collectively as the amyloidoses is characterized by the deposition of insoluble amyloid fibrils. These are straight, unbranching structures about 70–120 å (1 å = 0.1 nm) in diameter and of indeterminate length formed by the self-assembly of a diverse group of normally soluble proteins. Knowledge of the structure of these fibrils is necessary for the understanding of their abnormal assembly and deposition, possibly leading to the rational design of therapeutic agents for their prevention or disaggregation. Structural elucidation is impeded by fibril insolubility and inability to crystallize, thus preventing the use of X-ray crystallography and solution NMR. CD, Fourier-transform infrared spectroscopy and light scattering have been used in the study of the mechanism of fibril formation. This review concentrates on the structural information about the final, mature fibril and in particular the complementary techniques of cryo-electron microscopy, solid-state NMR and X-ray fibre diffraction.


2002 ◽  
Vol 357 (1426) ◽  
pp. 1419-1420 ◽  

This general discussion was chaired by A. W. Rutherford ( Service de Bioénergétique, Saclay, France ) and revolved around two major topics: (i) the implications of X–ray crystallography on the relationships between structure and function; (ii) the molecular mechanisms of the water–splitting process.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1603-C1603
Author(s):  
Vijay Reddy ◽  
Glen Nemerow

Human adenoviruses (HAdVs) are large (~150nm in diameter, 150MDa) nonenveloped double-stranded DNA (dsDNA) viruses that cause respiratory, ocular, and enteric diseases. The capsid shell of adenovirus (Ad) comprises multiple copies of three major capsid proteins (MCP: hexon, penton base and fiber) and four minor/cement proteins (IIIa, VI, VIII and IX) that are organized with pseudo T=25 icosahedral symmetry. In addition, six other proteins (V, VII, μ, IVa2, terminal protein and protease) are encapsidated along with the 36Kb dsDNA genome inside the capsid. The crystal structures of all three MCPs are known and so is their organization in the capsid from prior X-ray crystallography and cryoEM analyses. However structures and locations of various cement proteins are of considerable debate. We have determined and refined the structure of an entire human adenovirus employing X-ray crystallpgraphic methods at 3.8Å resolution. Adenovirus cement proteins play crucial roles in virion assembly, disassembly, cell entry and infection. Based on the refined crystal structure of adenovirus, we have determined the structure of the cement protein VI, a key membrane-lytic molecule and its associations with proteins V and VIII, which together glue peripentonal hexons beneath vertex region and connect them to rest of the capsid. Following virion maturation, the cleaved N-terminal pro-peptide of VI is observed deep in the peripentonal hexon cavity, detached from the membrane-lytic domain. Furthermore, we have significantly revised the recent cryoEM models for proteins IIIa and IX and both are located on the capsid exterior. Together, the cement proteins exclusively stabilize the hexon shell, thus rendering penton vertices the weakest links of the adenovirus capsid. Adenovirus cement protein structures reveal the molecular basis of the maturation cleavage of VI that is needed for endosome rupture and delivery of the virion into cytoplasm.


2014 ◽  
Vol 223 (1) ◽  
pp. T9-T23 ◽  
Author(s):  
Frank Peelman ◽  
Lennart Zabeau ◽  
Kedar Moharana ◽  
Savvas N Savvides ◽  
Jan Tavernier

Leptin plays a central role in the control of body weight and energy homeostasis, but is a pleiotropic cytokine with activities on many peripheral cell types. In this review, we discuss the interaction of leptin with its receptor, and focus on the structural and mechanistic aspects of the extracellular aspects of leptin receptor (LR) activation. We provide an extensive overview of all structural information that has been obtained for leptin and its receptor via X-ray crystallography, electron microscopy, small-angle X-ray scattering, homology modeling, and mutagenesis studies. The available knowledge is integrated into putative models toward a recapitulation of the LR activation mechanism.


IUCrJ ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 306-323 ◽  
Author(s):  
Alexander M. Wolff ◽  
Iris D. Young ◽  
Raymond G. Sierra ◽  
Aaron S. Brewster ◽  
Michael W. Martynowycz ◽  
...  

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.


2021 ◽  
Author(s):  
Bernhard C. Lechtenberg ◽  
Marina P. Gehring ◽  
Taylor P. Light ◽  
Mike W. Matsumoto ◽  
Kalina Hristova ◽  
...  

ABSTRACTEph receptor tyrosine kinases play a key role in cell-cell communication. However, lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered detailed understanding of their signaling mechanisms. Here, we use an integrative structural biology approach combining X-ray crystallography, small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry, to gain the first insights into the structure and dynamics of the entire EphA2 intracellular region. EphA2 promotes cancer malignancy through a poorly understood non-canonical form of signaling that depends on serine/threonine phosphorylation of the linker connecting the EphA2 kinase and SAM domains. We uncovered two distinct molecular mechanisms that may function in concert to mediate the effects of linker phosphorylation through an orchestrated allosteric regulatory network. The first involves a shift in the equilibrium between a “closed” configuration of the EphA2 intracellular region and an “open” more extended configuration induced by the accumulation of phosphorylation sites in the linker. This implies that cooperation of multiple serine/threonine kinase signaling networks is necessary to promote robust EphA2 non-canonical signaling. The second involves allosteric rearrangements in the kinase domain and juxtamembrane segment induced by phosphorylation of some linker residues, suggesting a link between EphA2 non-canonical signaling and canonical signaling through tyrosine phosphorylation. Given the key role of EphA2 in cancer malignancy, this new knowledge can inform therapeutic strategies.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

This chapter provides an introduction to small angle solution scattering with particular reference to the complementary technique of X-ray crystallography and the relationship between the two. It describes at its most basic level the theoretical underpinnings of solution scattering starting from a single molecule and how this information is sampled in crystals versus in solution. A brief introduction is given to some of the primary types of structural information that can be obtained from experiments. The chapter concludes discussing some of the most common applications of the technique in structural biology, and where the future is likely headed.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax4621 ◽  
Author(s):  
Hongyi Xu ◽  
Hugo Lebrette ◽  
Max T. B. Clabbers ◽  
Jingjing Zhao ◽  
Julia J. Griese ◽  
...  

Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermine protein structures that had already been solved previously by x-ray diffraction. Here, we present the first new protein structure—an R2lox enzyme—solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0-Å resolution was of sufficient quality to allow accurate model building and refinement. The dinuclear metal cofactor could be located in the map and was modeled as a heterodinuclear Mn/Fe center based on previous studies. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1030 ◽  
Author(s):  
Laurent Maveyraud ◽  
Lionel Mourey

With the advent of structural biology in the drug discovery process, medicinal chemists gained the opportunity to use detailed structural information in order to progress screening hits into leads or drug candidates. X-ray crystallography has proven to be an invaluable tool in this respect, as it is able to provide exquisitely comprehensive structural information about the interaction of a ligand with a pharmacological target. As fragment-based drug discovery emerged in the recent years, X-ray crystallography has also become a powerful screening technology, able to provide structural information on complexes involving low-molecular weight compounds, despite weak binding affinities. Given the low numbers of compounds needed in a fragment library, compared to the hundreds of thousand usually present in drug-like compound libraries, it now becomes feasible to screen a whole fragment library using X-ray crystallography, providing a wealth of structural details that will fuel the fragment to drug process. Here, we review theoretical and practical aspects as well as the pros and cons of using X-ray crystallography in the drug discovery process.


Sign in / Sign up

Export Citation Format

Share Document