scholarly journals Greenhouse gas emissions from the water–air interface of a grassland river: a case study of the Xilin River

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.

2020 ◽  
Vol 4 ◽  
pp. 38-53
Author(s):  
V.A. Grabar ◽  

The current intensive development of shipping and aviation is accompanied by an increase in anthropogenic impact on the environment and climate. According to the International Civil Aviation Organization and the International Maritime Organization (IMO) assessments, greenhouse gas emissions from international air and sea traffic are expected to increase by 2-3 times by 2050. Carbon dioxide, methane and nitrous oxide emissions from international aviation and navigation from the territory of Russia for the period of 1990-2018 were estimated, the dynamics and the main drivers of emissions changes are analyzed, international comparisons are provided. The calculation was made in accordance with the methodology of the Intergovernmental Panel on Climate Change based on the data from the Federal Air Transport Agency and IAA «Port News». Analysis of historical trends shows that greenhouse gas emissions dynamics during the reporting period for international sea and air shippingis almost the same. In 2018, the total emission of CO2, СH4 and N2O from international transport from the territory of Russia amounted to 47.0 million tons of CO2-equivalent, which is 2.7 times higher than in 1990. Carbon dioxide dominates in the component composition of the emissions, its share in the total emission amounted to 99.5%. Contributions of methane and nitrous oxide emissions were 0.1% and 0.4%, respectively. Shipping makes a major contribution to emissions. Russia's share of worldwide carbon dioxide emission from international water and aviation transport does not exceed 3.5%.Emissions from aviation and shipping have been largely driven by economy and international trade. Greenhouse gases emissions from international aviation and maritime transport are expected to decrease in the coming years related to IMO's banon high-sulfur fuel use and reduction of international air and sea traffic in the light of the spread of the coronavirus in 2020.


2021 ◽  
Vol 13 (8) ◽  
pp. 4224
Author(s):  
Jian Xue ◽  
Zeeshan Rasool ◽  
Raima Nazar ◽  
Ahmad Imran Khan ◽  
Shaukat Hussain Bhatti ◽  
...  

Widespread interference of human activities has resulted in major environmental problems, including pollution, global warming, land degradation, and biodiversity loss, directly affecting the sustainability and quality of the environment and ecosystem. The study aims to address the impact of the extraction of natural resources and globalization on the environmental quality in the South Asian countries for the period 1991–2018. A new methodology Dynamic Common Correlated Effects is used to deal with cross-sectional dependence. Most previous studies use only carbon dioxide emissions, which is an inadequate measure of environmental quality. Besides carbon dioxide emissions, we have used other greenhouse gas emissions like nitrous oxide and methane emissions with a new indicator, “ecological footprint”. Long-run estimation results indicate a positive and significant relationship of natural resources with all greenhouse gas emissions and a negative association with the ecological footprint. Globalization shows a negative association with carbon dioxide emissions and nitrous oxide emissions and a positive relationship with the ecological footprint. Institutional performance is negatively correlated with carbon dioxide emissions, methane emissions, and ecological footprint while positively associated with nitrous oxide emissions. The overall findings highlight the pertinence of reducing greenhouse gas emissions and ecological footprint, proper utilizing of natural resources, enhancing globalization, and improving institutional performance to ensure environmental sustainability.


Author(s):  
Natasha Doyle ◽  
◽  
Philiswa Mbandlwa ◽  
Sinead Leahy ◽  
Graeme Attwood ◽  
...  

This chapter aims to outline the strategy of using feed supplements for the reduction of greenhouse gas emissions (GHG) in ruminants, including methane (CH4), carbon dioxide and nitrous oxide, given that feed intake is an important variable in predicting these emissions. Focus will be given to direct-fed microbials, a term reserved for live microbes which can be supplemented to feed to elicit a beneficial response. The viability of such methods will also be analysed for their use in large scale on-farm operations.


Chemosphere ◽  
2003 ◽  
Vol 52 (3) ◽  
pp. 609-621 ◽  
Author(s):  
Jari T. Huttunen ◽  
Jukka Alm ◽  
Anu Liikanen ◽  
Sari Juutinen ◽  
Tuula Larmola ◽  
...  

2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


2017 ◽  
Vol 13 (1) ◽  
pp. 39-49
Author(s):  
Paweł Wiśniewski ◽  
Mariusz Kistowski

Abstract Nitrous oxide (N2O) is one of the main greenhouse gases, with a nearly 300 times greater potential to produce a greenhouse effect than carbon dioxide (CO2). Almost 80% of the annual emissions of this gas in Poland come from agriculture, and its main source is the use of agricultural soils. The study attempted to estimate the N2O emission from agricultural soils and to indicate its share in the total greenhouse gas emissions in 48 Polish communes. For this purpose, a simplified solution has been proposed which can be successfully applied by local government areas in order to assess nitrous oxide emissions, as well as to monitor the impact of actions undertaken to limit them. The estimated emission was compared with the results of the baseline greenhouse gas inventory prepared for the needs of the low-carbon economy plans adopted by the studied self-governments. This allowed us to determine the share of N2O emissions from agricultural soils in the total greenhouse gas emissions of the studied communes. The annual N2O emissions from agricultural soils in the studied communes range from 1.21 Mg N2O-N to 93.28 Mg N2O-N, and the cultivation of organic soils is its main source. The use of mineral and natural fertilisers, as well as indirect emissions from nitrogen leaching into groundwater and surface waters, are also significant. The results confirm the need to include greenhouse gas emissions from the use of agricultural soils and other agricultural sources in low-carbon economy plans.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4904
Author(s):  
Zofia Koloszko-Chomentowska ◽  
Leszek Sieczko ◽  
Roman Trochimczuk

The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.


2019 ◽  
Vol 76 (3) ◽  
Author(s):  
Murilo G. Veloso ◽  
Jeferson Dieckow ◽  
Josiléia Acordi Zanatta ◽  
Maico Pergher ◽  
Cimélio Bayer ◽  
...  

World on Fire ◽  
2021 ◽  
pp. 109-128
Author(s):  
Mark Rowlands

The edge required by renewable technologies is provided by a simplification of the energy supply train. This simplification consists in no longer eating animals. Animals have upside-down energy returned on energy invested values (EROIs), with up to 30 times as much energy having to be put into raising them as we get out of them through eating them or their products. At one time, when our fossil fuels sported extraordinarily high EROIs—100:1 in some cases—we could afford to take this sort of hit on our food-based energy supply. Now, however, we can no longer afford to do so. Moreover, the results of this grossly inefficient energy exchange are rising greenhouse gas emissions. By no longer eating meat, we can reduce greenhouse gas emissions by roughly 14%. Importantly, much of this reduction will be in methane and nitrous dioxide, which have very high global warming potential relative to carbon dioxide.


Sign in / Sign up

Export Citation Format

Share Document