scholarly journals ASSESSMENT OF ATMOSPHERIC GREENHOUSE GAS EMISSIONS FROM INTERNATIONAL AVIATION AND NAVIGATION FROM THE TERRITORY OF RUSSIA

2020 ◽  
Vol 4 ◽  
pp. 38-53
Author(s):  
V.A. Grabar ◽  

The current intensive development of shipping and aviation is accompanied by an increase in anthropogenic impact on the environment and climate. According to the International Civil Aviation Organization and the International Maritime Organization (IMO) assessments, greenhouse gas emissions from international air and sea traffic are expected to increase by 2-3 times by 2050. Carbon dioxide, methane and nitrous oxide emissions from international aviation and navigation from the territory of Russia for the period of 1990-2018 were estimated, the dynamics and the main drivers of emissions changes are analyzed, international comparisons are provided. The calculation was made in accordance with the methodology of the Intergovernmental Panel on Climate Change based on the data from the Federal Air Transport Agency and IAA «Port News». Analysis of historical trends shows that greenhouse gas emissions dynamics during the reporting period for international sea and air shippingis almost the same. In 2018, the total emission of CO2, СH4 and N2O from international transport from the territory of Russia amounted to 47.0 million tons of CO2-equivalent, which is 2.7 times higher than in 1990. Carbon dioxide dominates in the component composition of the emissions, its share in the total emission amounted to 99.5%. Contributions of methane and nitrous oxide emissions were 0.1% and 0.4%, respectively. Shipping makes a major contribution to emissions. Russia's share of worldwide carbon dioxide emission from international water and aviation transport does not exceed 3.5%.Emissions from aviation and shipping have been largely driven by economy and international trade. Greenhouse gases emissions from international aviation and maritime transport are expected to decrease in the coming years related to IMO's banon high-sulfur fuel use and reduction of international air and sea traffic in the light of the spread of the coronavirus in 2020.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.



2021 ◽  
Vol 13 (8) ◽  
pp. 4224
Author(s):  
Jian Xue ◽  
Zeeshan Rasool ◽  
Raima Nazar ◽  
Ahmad Imran Khan ◽  
Shaukat Hussain Bhatti ◽  
...  

Widespread interference of human activities has resulted in major environmental problems, including pollution, global warming, land degradation, and biodiversity loss, directly affecting the sustainability and quality of the environment and ecosystem. The study aims to address the impact of the extraction of natural resources and globalization on the environmental quality in the South Asian countries for the period 1991–2018. A new methodology Dynamic Common Correlated Effects is used to deal with cross-sectional dependence. Most previous studies use only carbon dioxide emissions, which is an inadequate measure of environmental quality. Besides carbon dioxide emissions, we have used other greenhouse gas emissions like nitrous oxide and methane emissions with a new indicator, “ecological footprint”. Long-run estimation results indicate a positive and significant relationship of natural resources with all greenhouse gas emissions and a negative association with the ecological footprint. Globalization shows a negative association with carbon dioxide emissions and nitrous oxide emissions and a positive relationship with the ecological footprint. Institutional performance is negatively correlated with carbon dioxide emissions, methane emissions, and ecological footprint while positively associated with nitrous oxide emissions. The overall findings highlight the pertinence of reducing greenhouse gas emissions and ecological footprint, proper utilizing of natural resources, enhancing globalization, and improving institutional performance to ensure environmental sustainability.



Author(s):  
Natasha Doyle ◽  
◽  
Philiswa Mbandlwa ◽  
Sinead Leahy ◽  
Graeme Attwood ◽  
...  

This chapter aims to outline the strategy of using feed supplements for the reduction of greenhouse gas emissions (GHG) in ruminants, including methane (CH4), carbon dioxide and nitrous oxide, given that feed intake is an important variable in predicting these emissions. Focus will be given to direct-fed microbials, a term reserved for live microbes which can be supplemented to feed to elicit a beneficial response. The viability of such methods will also be analysed for their use in large scale on-farm operations.



Chemosphere ◽  
2003 ◽  
Vol 52 (3) ◽  
pp. 609-621 ◽  
Author(s):  
Jari T. Huttunen ◽  
Jukka Alm ◽  
Anu Liikanen ◽  
Sari Juutinen ◽  
Tuula Larmola ◽  
...  


2017 ◽  
Vol 13 (1) ◽  
pp. 39-49
Author(s):  
Paweł Wiśniewski ◽  
Mariusz Kistowski

Abstract Nitrous oxide (N2O) is one of the main greenhouse gases, with a nearly 300 times greater potential to produce a greenhouse effect than carbon dioxide (CO2). Almost 80% of the annual emissions of this gas in Poland come from agriculture, and its main source is the use of agricultural soils. The study attempted to estimate the N2O emission from agricultural soils and to indicate its share in the total greenhouse gas emissions in 48 Polish communes. For this purpose, a simplified solution has been proposed which can be successfully applied by local government areas in order to assess nitrous oxide emissions, as well as to monitor the impact of actions undertaken to limit them. The estimated emission was compared with the results of the baseline greenhouse gas inventory prepared for the needs of the low-carbon economy plans adopted by the studied self-governments. This allowed us to determine the share of N2O emissions from agricultural soils in the total greenhouse gas emissions of the studied communes. The annual N2O emissions from agricultural soils in the studied communes range from 1.21 Mg N2O-N to 93.28 Mg N2O-N, and the cultivation of organic soils is its main source. The use of mineral and natural fertilisers, as well as indirect emissions from nitrogen leaching into groundwater and surface waters, are also significant. The results confirm the need to include greenhouse gas emissions from the use of agricultural soils and other agricultural sources in low-carbon economy plans.



2021 ◽  
Author(s):  
Rebekka Artz ◽  
Mhairi Coyle ◽  
Gillian Donaldson-Selby ◽  
Ross Morrison

Abstract The net impact of greenhouse gas emissions from degraded peatland environments on national Inventories and subsequent mitigation of such emissions has only been seriously considered within the last decade. Data on greenhouse gas emissions from special cases of peatland degradation, such as eroding peatlands, are particularly scarce. Here, we report the first eddy covariance-based monitoring of carbon dioxide (CO2) emissions from an eroding Atlantic blanket bog. The CO2 budget across the period July 2018 to November 2019 was 147 (+/- 9) g C m-2. For an annual budget that contained proportionally more of the extreme 2018 drought and heat wave, cumulative CO2 emissions were nearly double (191 g C m-2) of that of an annual period without drought (106 g C m-2), suggesting that direct CO2 emissions from eroded peatlands are at risk of increasing with projected changes in temperatures and precipitation due to global climate change. The results of this study are consistent with chamber-based and modelling studies that suggest degraded blanket bogs to be a net source of CO2 to the atmosphere, and provide baseline data against which to assess future peatland restoration efforts in this region.



Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4904
Author(s):  
Zofia Koloszko-Chomentowska ◽  
Leszek Sieczko ◽  
Roman Trochimczuk

The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.



Author(s):  
Mary Schmeida ◽  
Ramona Sue McNeal

The Obama Administration Climate Action Plan is enforcing goals to reduce greenhouse gas emissions below 2005 levels by 2020, regulating both stationary and mobile sources of pollution. As energy-related carbon dioxide emissions account for the majority of greenhouse gas emissions, the plan proposed carbon pollution standards for both new and existing plants. Impacts related to upgraded regulations have been projected as both favorable and not, with public and political opinions showing support among some groups and among other interests a concern. The purpose of this chapter is to analyze factors predicting which groups are supportive and non-supportive on setting stricter carbon dioxide emission limits on coal-fired electricity generating power plants. This topic is explored using multivariate regression analysis and individual level data. Findings suggest that comprehension of the policy area and individual financial situation are the most important factors in predicting support for stricter emission limits.



Author(s):  
C.A.M. De Klein ◽  
S.F. Ledgard ◽  
H. Clark

Agriculture contributes about 60% of New Zealand's total greenhouse gas emissions. Management practices for reducing these emissions will be required to meet our future international commitments. This paper presents estimates of two practical on-farm measures for reducing total greenhouse gas emissions from an average dairy farm on the West Coast of the South Island of New Zealand: 1) the incorporation of cereal silage into the diet, and 2) the strategic use of a stand-off pad in winter. Total calculated greenhouse gas emissions were reduced by about 14% if fertiliser N-boosted pasture was replaced with bought-in cereal silage grown off-farm. The estimated reduction in emissions was due to reductions in nitrous oxide and carbon dioxide emissions, whereas methane emissions were not significantly affected by this management practice. Reduced methane emissions required an increase in per animal production and a corresponding decrease in stocking rate. The use of a stand-off pad during winter did not significantly affect total greenhouse gas emissions using current inventory calculations. However, recent research suggests that it may reduce emissions by 3 to 8%, when accounting for the seasonal variation in N2O emissions and reduced fertiliser N requirements due to reduced pasture damage. A preliminary assessment of the economic implications of the cereal silage option suggested the cost of using cereal silage is likely to be higher than any savings that could be accrued from carbon credits obtained from reducing greenhouse gas emissions. However, the costs associated with building and using a stand-off pad are likely to be off-set against a potential increase in pasture production, and carbon credits obtained from a reduction in greenhouse gas emission would represent a net cost saving. Keywords: carbon dioxide, cereal silage, dairying, methane, mitigation options, nitrous oxide, stand-off pad



Sign in / Sign up

Export Citation Format

Share Document