scholarly journals Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vladimir Popov ◽  
Alexander Fleisher ◽  
Gary Muller-Kamskii ◽  
Andrei Shishkin ◽  
Alexander Katz-Demyanetz ◽  
...  

AbstractThis study introduces two hybrid processes integrating an additive manufacturing technique with post-processing treatments namely (i) Binder Jetting Printing (BJP) + Cold Isostatic Pressing (CIP) + cycle and (ii) BJP + cycle where cycle refers to a sequence of Impregnation—Drying—Pyrolysis. These two new processes yielded additively manufactured parts with higher density and reduced defects/porosities. As a testbed, we used these new processes to fabricate graphite structures. The samples produced by both methods were compared with each other and benchmarked to the samples produced by (a) BJP alone and (b) Traditional uniaxial pressing like compaction moulding. Various characterisation methods were used to investigate the microstructure and mechanical properties which showed that the porosity of hybrid manufactured samples reduces from 55% to a record 7%. This technological pathway is expected to create a new avalanche of industrial applications that are hitherto unexplored in the arena of hybrid additive manufacturing with BJP method.

Author(s):  
Ali Behroozfar ◽  
Soheil Daryadel ◽  
S. Reza Morsali ◽  
Rodrigo A. Bernal ◽  
Majid Minary-Jolandan

Nanotwinned (nt) metals exhibit superior electrical and mechanical properties compared to their coarse-grained and nano-grained counterparts. They have a unique microstructure with grains that contain layered nanoscale twins divided by coherent twin boundaries (TBs). Since nanotwinned metals have low electrical resistivity and high resistance to electromigration, they are ideal materials for making nanowires, interconnections and switches. In this paper we show the possibility of making nanotwinned copper interconnections on a non-conductive substrate using a novel additive manufacturing technique called L-PED. Through this approach, microscale interconnections can be directly printed on the substrate in environmental conditions and without post processing.


Author(s):  
Brooke Mansfield ◽  
Sabrina Torres ◽  
Tianyu Yu ◽  
Dazhong Wu

Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.


2019 ◽  
Vol 890 ◽  
pp. 70-76
Author(s):  
Dora Sousa ◽  
Sara Biscaia ◽  
Tânia Viana ◽  
Miguel Gaspar ◽  
Vidhura Mahendra ◽  
...  

Rosins are the non-volatile exudates of pine resins with hydrophobic characteristics that are widely used as a precursor for many industrial applications. In this paper we discuss the nature, process and its applications as a matrix for a composite material for additive manufacturing. The composite material has been tailored to chemical and mechanical properties with respect to their applications.


Author(s):  
Krishna Kishore Mugada ◽  
Aravindan Sivanandam ◽  
Ravi Kumar Digavalli

Wire + Arc additive manufacturing (WAAM) processes have become popular because of their proven capabilities to produce large metallic components with high deposition rates (promoted by arc-based processes) compared to conventional additive manufacturing processes such as powder bed fusion, binder jetting, direct energy deposition, etc. The applications of WAAM processes were constantly increasing in the manufacturing sector, which necessitates an understanding of the process capability to various metals. This chapter outlines the significant outcomes of the WAAM process for most of the engineering metals in terms of microstructure and mechanical properties. Discussion on various defects associated with the processed components is also presented. Potential application of WAAM for different metals such as aluminum and its alloys, titanium, and steels was discussed. The research indicates that the components manufactured by the WAAM process have significant microstructural changes and improved mechanical properties.


2018 ◽  
Vol 233 ◽  
pp. 00031 ◽  
Author(s):  
Bianca F. Gomes ◽  
Paulo J. Morais ◽  
Vítor Ferreira ◽  
Margarida Pinto ◽  
Luiz H. de Almeida

Among the several metallic additive manufacturing (MAM) technologies available, the wire-and-arc based ones are very beneficial due to the lower operational costs, higher efficiency use of raw materials, and high deposition rates achieved. The Cold Metal Transfer (CMT) process stands out by the lower heat input compared to the other wire-and-arc based methods. On the other hand, processes such as Pulse Multi Control (PMC) and its variants have not been tested yet in additive manufacturing and for this reason they should be evaluated. Therefore, considering the technologies potential and the need of automotive and aeronautical industry of manufacturing parts of complex and optimized geometry in a faster way, the study of these technologies is very relevant. Thus, the objective of this paper is the additive manufacturing of walls with Al-Mg alloy using CMT, CMT-Pulse, PMC, PMC-Mix, and MIG-Pulse, and the evaluation of the hardness, mechanical strength, and porosity of the manufactured parts aiming future industrial applications. The results showed good mechanical properties, small pore fraction, and geometric uniformity of parts produced with PMC and PMC-Mix. MIG-Pulse and PMC parts presented the smaller pore fraction among the GMAW variants, although no difference was noticed in the mechanical properties of the parts.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 61
Author(s):  
John Ryan C. Dizon ◽  
Ciara Catherine L. Gache ◽  
Honelly Mae S. Cascolan ◽  
Lina T. Cancino ◽  
Rigoberto C. Advincula

Additive manufacturing, commonly known as 3D printing, is an advancement over traditional formative manufacturing methods. It can increase efficiency in manufacturing operations highlighting advantages such as rapid prototyping, reduction of waste, reduction of manufacturing time and cost, and increased flexibility in a production setting. The additive manufacturing (AM) process consists of five steps: (1) preparation of 3D models for printing (designing the part/object), (2) conversion to STL file, (3) slicing and setting of 3D printing parameters, (4) actual printing, and (5) finishing/post-processing methods. Very often, the 3D printed part is sufficient by itself without further post-printing processing. However, many applications still require some forms of post-processing, especially those for industrial applications. This review focuses on the importance of different finishing/post-processing methods for 3D-printed polymers. Different 3D printing technologies and materials are considered in presenting the authors’ perspective. The advantages and disadvantages of using these methods are also discussed together with the cost and time in doing the post-processing activities. Lastly, this review also includes discussions on the enhancement of properties such as electrical, mechanical, and chemical, and other characteristics such as geometrical precision, durability, surface properties, and aesthetic value with post-printing processing. Future perspectives is also provided towards the end of this review.


2014 ◽  
Vol 783-786 ◽  
pp. 1286-1291 ◽  
Author(s):  
Andrey Koptioug ◽  
Lars Erik Rännar ◽  
Mikael Bäckström ◽  
Marie Cronskär

Additive Manufacturing (AM) has solidly established itself not only in rapid prototyping but also in industrial manufacturing. Its success is mainly determined by a possibility of manufacturing components with extremely complex shapes with minimal material waste. Rapid development of AM technologies includes processes using unique new materials, which in some cases is very hard or impossible to process any other way. Along with traditional industrial applications AM methods are becoming quite successful in biomedical applications, in particular in implant and special tools manufacturing. Here the capacity of AM technologies in producing components with complex geometric shapes is often brought to extreme. Certain issues today are preventing the AM methods taking its deserved place in medical and biomedical applications. Present work reports on the advances in further developing of AM technology, as well as in related post-processing, necessary to address the challenges presented by biomedical applications. Particular examples used are from Electron Beam Melting (EBM), one of the methods from the AM family.


Author(s):  
Jan-Henrik Schneberger ◽  
Tobias Häfele ◽  
Jerome Kaspar ◽  
Michael Vielhaber

AbstractAdditive Manufacturing (AM) provides significant opportunities for design and functional integration of parts and assemblies. Compared to conventional processes, the AM principle increases design freedom notably. Additionally, numerous processible materials and hybrid processes enable the implementation in different industries, spanning from aerospace over automobile until medical applications.However, there are still handicaps to be addressed, arising from the large diversity of AM principles, post-processing and quality assurance issues, partly insufficient user knowledge, and organizational aspects. Coherently, lacking requirements specification hinders a successful consideration of AM in the early stages of development, and its later implementation.To promote knowledge build-up, this contribution presents a requirements specification framework, which supports developers in determining demands throughout the development process, including those resulting from post-processing and testing operations. By incorporating thorough analyses of general organizational and resort overarching limitations, this contribution promotes a successful implementation of suitable AM strategies.


2021 ◽  
Author(s):  
Valerio Lampitella ◽  
Marco Trofa ◽  
Antonello Astarita ◽  
Gaetano D’Avino

Powder bed additive manufacturing allows for the production of fully customizable parts and is of great interest for industrial applications. However, the repeatability of the parts and the uniformity of the mechanical properties are still an issue. More specifically, the physical mechanism of the spreading process of the powders, which significantly affects the characteristics of the final part, is not completely understood. In powder bed fusion technologies, the spreading is performed by a device, typically a roller or a blade, that collects the powders from the feedstock and successively deposits them in a layer of several dozens of microns that is then processed with a laser beam. In this work, an experimental approach is developed and employed to study the powder spreading process and analyze in detail the motion of the powders from the accumulation zone to the deposition stage. The presented experiments are carried out on a home-made device that reproduces the spreading process and enables the measurement of the characteristics of the powder bed. Furthermore, the correlation with the process parameters, e.g., the speed of the spreading device, is also investigated. These results can be used to obtain useful insights on the optimal window for the process parameters.


Sign in / Sign up

Export Citation Format

Share Document