scholarly journals Simultaneous quantification method for 5-FU, uracil, and tegafur using UPLC-MS/MS and clinical application in monitoring UFT/LV combination therapy after hepatectomy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ken Shiraiwa ◽  
Yosuke Suzuki ◽  
Hiroki Uchida ◽  
Yukio Iwashita ◽  
Ryota Tanaka ◽  
...  

AbstractCombination therapy of tegafur/uracil (UFT) and leucovorin (LV) is widely used to treat colorectal cancers. Although this therapy has a significant therapeutic effect, severe adverse effects occur frequently. Therapeutic drug monitoring (TDM) may help to prevent adverse effects. A useful assay that can quantitate plasma levels of 5-FU, uracil, and tegafur simultaneously for TDM has been desired, but such a method is not currently available. In this study, we aimed to develop a sensitive method for simultaneous quantification of 5-FU, uracil, and tegafur in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). After preparing plasma samples by protein precipitation and liquid extraction, 5-FU, uracil, and tegafur were analyzed by UPLC-MS/MS in negative electrospray ionization mode. Validation was performed according to US Food and Drugs Administration guidance. The calibration curves were linear over concentration ranges of 2–500 ng/mL for 5-FU, 20–5000 ng/mL for uracil, and 200–50,000 ng/mL for tegafur. The corresponding average recovery rates were 79.9, 80.9, and 87.8%. The method provides accuracy within 11.6% and precision below 13.3% for all three analytes. Matrix effects of 5-FU, uracil, and tegafur were higher than 43.5, 84.9, and 100.2%, respectively. This assay was successfully applied to assess the time courses of plasma 5-FU, uracil, and tegafur concentrations in two patients with colorectal liver metastasis who received UFT/LV therapy after hepatectomy. In conclusion, we succeeded to develop a sensitive and robust UPLC-MS/MS method for simultaneous quantification of 5-FU, uracil, and tegafur in human plasma. This method is potentially useful for TDM in patients receiving UFT/LV combination therapy.

2021 ◽  
Vol 14 (5) ◽  
pp. 460
Author(s):  
Amedeo De Nicolò ◽  
Alessandra Manca ◽  
Alice Ianniello ◽  
Alice Palermiti ◽  
Andrea Calcagno ◽  
...  

Therapeutic options to treat HIV infection have widened in the past years, improving both effectiveness and tolerability, but nucleoside reverse transcriptase inhibitors (NRTIs) are still considered the standard backbone of the combination regimens. Therapeutic drug monitoring (TDM) can be useful for these drugs, due to concentration–effect relationship, with risk of ineffectiveness, toxicity or adherence concerns: in this scenario, robust and multiplexed methods are needed for an effective TDM activity. In this work, the first validated ultra-high spectrometry liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) method is described for the high-sensitive simultaneous quantification of all the currently used NRTIs in human plasma, including tenofovir alafenamide (TAF), following FDA and EMA guidelines. The automated sample preparation consisted in the addition of an internal standard (IS) working solution, containing stable-isotope-linked drugs, protein precipitation and drying. Dry extracts were reconstituted with water, then, these underwent reversed phase chromatographic separation: compounds were detected through electrospray ionization and multiple reaction monitoring. Accuracy, precision, recovery and IS-normalized matrix effect fulfilled guidelines’ requirements. The application of this method on samples from people living with HIV (PLWH) showed satisfactory performance, being capable of quantifying the very low concentrations of tenofovir (TFV) in patients treated with TAF.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Tulsidas Mishra ◽  
Pranav S. Shrivastav

Objectives. HIV protease inhibitors are used in the treatment of patients suffering from AIDS and they act at the final stage of viral replication by interfering with the HIV protease enzyme. The paper describes a selective, sensitive, and robust method for simultaneous determination of three protease inhibitors atazanavir, darunavir and ritonavir in human plasma by ultra performance liquid chromatography-tandem mass spectrometry.Materials and Methods. The sample pretreatment consisted of solid phase extraction of analytes and their deuterated analogs as internal standards from 50 μL human plasma. Chromatographic separation of analytes was performed on Waters Acquity UPLC C18 (50 × 2.1 mm, 1.7 μm) column under gradient conditions using 10 mM ammonium formate, pH 4.0, and acetonitrile as the mobile phase.Results. The method was established over a concentration range of 5.0–6000 ng/mL for atazanavir, 5.0–5000 ng/mL for darunavir and 1.0–500 ng/mL for ritonavir. Accuracy, precision, matrix effect, recovery, and stability of the analytes were evaluated as per US FDA guidelines.Conclusions. The efficiency of sample preparation, short analysis time, and high selectivity permit simultaneous estimation of these inhibitors. The validated method can be useful in determining plasma concentration of these protease inhibitors for therapeutic drug monitoring and in high throughput clinical studies.


2013 ◽  
Vol 13 (9) ◽  
pp. 4865-4875 ◽  
Author(s):  
S. Kundu ◽  
T. A. Quraishi ◽  
G. Yu ◽  
C. Suarez ◽  
F. N. Keutsch ◽  
...  

Abstract. Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first confirmed atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5) collected in Lahore, Pakistan, during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols with quadrupole time-of-flight (Q-ToF) mass spectrometry (MS). Benzyl sulfate was quantified in aerosol samples using ultra performance liquid chromatography (UPLC) coupled to negative electrospray ionization triple quadrupole (TQ) MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3) whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3). To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC), suggesting that aromatic organosulfates may be formed by secondary reactions. However, stronger statistical correlations of benzyl sulfate with combustion tracers (EC and levoglucosan) than with secondary tracers (SO42− and α-pinene-derived nitrooxy organosulfates) suggest that aromatic organosulfates may be emitted from the combustion sources or their subsequent atmospheric processing. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.


2012 ◽  
Vol 12 (12) ◽  
pp. 32795-32823 ◽  
Author(s):  
S. Kundu ◽  
T. A. Quraishi ◽  
G. Yu ◽  
C. Suarez ◽  
F. N. Keutsch ◽  
...  

Abstract. Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first reported atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5) collected in Lahore, Pakistan during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols using ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight (Q-ToF) mass spectrometry (MS). Benzyl sulfate was quantified in aerosol samples using UPLC coupled to negative electrospray ionization triple quadrupole (TQ) MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3) whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3). To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC), suggesting that aromatic organosulfates may be formed by secondary reactions. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.


2017 ◽  
Author(s):  
Luis A Serrano ◽  
Ye Yang ◽  
Elisa Salvati ◽  
Francesco Stellacci ◽  
Silke Krol ◽  
...  

At present, drug dosage is based on standardised approaches that disregard pharmakokinetic differences between patients and lead to non-optimal efficacy and unnecessary side effects. In this work, we demonstrate the potential of pH-mediated fluorescence spectroscopy for therapeutic drug monitoring in complex media. We apply this principle to the simultaneous quantification of the chemotherapeutic prodrug Irinotecan and its active metabolite SN-38 from human plasma across the clinically relevant concentration range, i.e. from micromolar to nanomolar at molar ratios of up to 30:1.


2021 ◽  
Vol 17 ◽  
Author(s):  
Karthik Rajendran ◽  
Karthika Anoop ◽  
Krishnaveni Nagappan ◽  
Genguchetti Mohan Sekar ◽  
Sankham Devendran Rajendran

Background: Extensive therapeutic drug monitoring needs an analytical method for efficient and sensitive quantification of analytes of interest in clinical pharmacology. Objective: A rapid, robust, sensitive and simple UPLC-MS/MS method to quantify Methsuximide (Ms) and N-desmethyl methsuximide/Normesuximide (MsMET) in human plasma was optimized, developed, and validated for application in a pharmacokinetic study. Method: Reverse phased chromatography was performed using Zorbax SB-C18, 4.6 x 75 mm., 3.5 µm as stationary phase, methanol and 0.1% formic acid (60:40 v/v) as mobile phase which was delivered isocratically at a flow rate of 0.9 mL/min. The sample injection volume was 5 µL. Mass spectrometric quantification of the analytes was performed using positive electrospray ionization as mass interface along with multiple reaction monitoring (MRM) as acquisition mode. Results: The selected mass transition ions for analyte, metabolite and its respective internal standards are as follows, precursor ion (m/z) and product ion (m/z): Ms (204.06 and 119.02), MsMET (190.05 and 119.82), Ms internal standard (MsIS) (209.17 and 124.02), and MsMET internal standard (MsMETIS) (195.09 and 124.16), respectively. The current method was found to be linear for Ms (60.72-5920 ng/mL) and MsMET (60.38-6010 ng/mL) with r2 values not less than 0.999. The mean recoveries of all analytes ranged between 71.37 and 86.38 percentage. Conclusion: This method was validated in accordance with USFDA’s bioanalytical guidelines. This method could be applied for a routine analysis of Ms and MsMET in clinical pharmacological practice.


Sign in / Sign up

Export Citation Format

Share Document