scholarly journals Development and Validation of an Up-to-Date Highly Sensitive UHPLC-MS/MS Method for the Simultaneous Quantification of Current Anti-HIV Nucleoside Analogues in Human Plasma

2021 ◽  
Vol 14 (5) ◽  
pp. 460
Author(s):  
Amedeo De Nicolò ◽  
Alessandra Manca ◽  
Alice Ianniello ◽  
Alice Palermiti ◽  
Andrea Calcagno ◽  
...  

Therapeutic options to treat HIV infection have widened in the past years, improving both effectiveness and tolerability, but nucleoside reverse transcriptase inhibitors (NRTIs) are still considered the standard backbone of the combination regimens. Therapeutic drug monitoring (TDM) can be useful for these drugs, due to concentration–effect relationship, with risk of ineffectiveness, toxicity or adherence concerns: in this scenario, robust and multiplexed methods are needed for an effective TDM activity. In this work, the first validated ultra-high spectrometry liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) method is described for the high-sensitive simultaneous quantification of all the currently used NRTIs in human plasma, including tenofovir alafenamide (TAF), following FDA and EMA guidelines. The automated sample preparation consisted in the addition of an internal standard (IS) working solution, containing stable-isotope-linked drugs, protein precipitation and drying. Dry extracts were reconstituted with water, then, these underwent reversed phase chromatographic separation: compounds were detected through electrospray ionization and multiple reaction monitoring. Accuracy, precision, recovery and IS-normalized matrix effect fulfilled guidelines’ requirements. The application of this method on samples from people living with HIV (PLWH) showed satisfactory performance, being capable of quantifying the very low concentrations of tenofovir (TFV) in patients treated with TAF.

2021 ◽  
Vol 17 ◽  
Author(s):  
Karthik Rajendran ◽  
Karthika Anoop ◽  
Krishnaveni Nagappan ◽  
Genguchetti Mohan Sekar ◽  
Sankham Devendran Rajendran

Background: Extensive therapeutic drug monitoring needs an analytical method for efficient and sensitive quantification of analytes of interest in clinical pharmacology. Objective: A rapid, robust, sensitive and simple UPLC-MS/MS method to quantify Methsuximide (Ms) and N-desmethyl methsuximide/Normesuximide (MsMET) in human plasma was optimized, developed, and validated for application in a pharmacokinetic study. Method: Reverse phased chromatography was performed using Zorbax SB-C18, 4.6 x 75 mm., 3.5 µm as stationary phase, methanol and 0.1% formic acid (60:40 v/v) as mobile phase which was delivered isocratically at a flow rate of 0.9 mL/min. The sample injection volume was 5 µL. Mass spectrometric quantification of the analytes was performed using positive electrospray ionization as mass interface along with multiple reaction monitoring (MRM) as acquisition mode. Results: The selected mass transition ions for analyte, metabolite and its respective internal standards are as follows, precursor ion (m/z) and product ion (m/z): Ms (204.06 and 119.02), MsMET (190.05 and 119.82), Ms internal standard (MsIS) (209.17 and 124.02), and MsMET internal standard (MsMETIS) (195.09 and 124.16), respectively. The current method was found to be linear for Ms (60.72-5920 ng/mL) and MsMET (60.38-6010 ng/mL) with r2 values not less than 0.999. The mean recoveries of all analytes ranged between 71.37 and 86.38 percentage. Conclusion: This method was validated in accordance with USFDA’s bioanalytical guidelines. This method could be applied for a routine analysis of Ms and MsMET in clinical pharmacological practice.


2019 ◽  
Vol 57 (8) ◽  
pp. 751-757
Author(s):  
Jiake He ◽  
Ning Li ◽  
Jiaqiu Xu ◽  
Jing Zhu ◽  
Yang Yu ◽  
...  

Abstract A simple, sensitive, specific, accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of chlorzoxazone in human plasma was developed and validated to evaluate the pharmacokinetic characteristics of chlorzoxazone test or reference formulation. Sample preparation was achieved by one step protein precipitation and dilution with acetontrile. The chromatographic separation was performed at 40°C with a gradient mobile phase (0.3 mL/min) and a Shimadzu VP-ODS C18 analytical column (column size: 150 × 2.0 mm). TSQ quantum access triple-quadrapole MS/MS detection was operated in a negative mode by multiple reaction monitoring. Ion transitions at m/z 168.0→132.1 for chlorzoxazone and m/z 451.3→379.3 for repaglinide (internal standard) were used for the LC-MS/MS analysis. The calibration was linear (r ≥ 0.995) over the tested concentration range of 0.2–20 μg/mL for chlorzoxazone in plasma. Precision, accuracy, recovery, matrix effect and stability for chlorzoxazone were evaluated and were excellent within the range of tested concentrations. This method was successfully applied to a bioequivalence study in 20 healthy Chinese volunteers. This method could also contribute to the personalized medication and therapeutic drug monitoring of chlorzoxazone.


Author(s):  
Pengfei Li ◽  
Xi Zhang ◽  
Shumin Wang ◽  
Jing Wang ◽  
Ziqi Liu ◽  
...  

AbstractLetrozole is one of the third generation aromatase inhibitors. It is suitable for the treatment of postmenopausal patients with advanced breast cancer and early treatment of breast cancer. It is necessary to develop a rapid, reliable, selective and sensitive LC–MS/MS assay to determine letrozole in human plasma to evaluate the clinical efficacy and adverse reactions with clinical pharmacokinetic and therapeutic drug monitoring. Separation was carried out on a Kromasil-C18 column using acetonitrile-water (55: 45, v/v) as mobile phase. Detection was carried out by multiple reaction monitoring on a 3200Qtrap mass spectrometry. The method needed one-step protein precipitation procedure only, and the cycle time was 2.5 min allowing 500–550 samples per day. It was linear within 0.30–50.00 ng/mL for plasma with the limit of detection (LOD) of 0.030 ng/mL. The intra- and inter-day RSD were 5.51–8.63%, 2.28–9.95% and the RE was 0.18–1.65%. The recovery rates of letrozole and internal standard for plasma were 89.30–98.55%. Letrozole was stable under all the conditions in the study. The method was sensitive enough to quantitate letrozole over a period of 288 h after giving a single oral dose of 2.5 mg–24 Chinese healthy volunteers. The absorption of letrozole was rapid with small individual difference, the tissue distribution of letrozole was more than that in blood, and the clearance was slow. Letrozole was similar to three-compartment model in vivo. Due to metabolism and excretion, the AUCs of letrozole varied greatly among individuals.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 621
Author(s):  
Aurélien Millet ◽  
Nihel Khoudour ◽  
Jérôme Guitton ◽  
Dorothée Lebert ◽  
François Goldwasser ◽  
...  

Pembrolizumab is a humanized immunoglobulin G4-kappa anti-PD1 antibody used in the treatment of different solid tumors or haematological malignancies. A liquid chromatography coupled with a high resolution mass spectrometry (orbitrap technology) method was fully developed, optimized, and validated for quantitative analysis of pembrolizumab in human plasma. A mass spectrometry assay was used for the first time a full-length stable isotope-labelled pembrolizumab-like (Arginine 13C6-15N4 and Lysine 13C6-15N2) as an internal standard; the sample preparation was based on albumin depletion and trypsin digestion and, finally, one surrogate peptide was quantified in positive mode. The assay showed good linearity over the range of 1–100 μg/mL, a limit of quantification at 1 μg/mL, excellent accuracy from 4.4% to 5.1%, and also a between-day precision below 20% at the limit of quantification. In parallel, an in-house ELISA was developed with a linearity range from 2.5 to 50 µg/mL. Then, results were obtained from 70 plasma samples of cancer patients that were treated with pembrolizumab and quantified with both methods were compared using the Passing-Bablok regression analysis and Bland-Altman plotting. The LC-MS/HRMS method is easy to implement in the laboratory for use in the context of PK/PD studies, clinical trials, or therapeutic drug monitoring.


Author(s):  
Narottam Pal ◽  
Avanapu Srinivasa Rao ◽  
Pigilli Ravikumar

<p><strong>Objective</strong>:<strong> </strong>To develop a new method and validate the same for the determination of Febuxostat (FBS) in human plasma by liquid chromatography–mass spectrometry (LCMS).</p><p><strong>Methods</strong>:<strong> </strong>The present method utilized reversed-phase high-performance liquid chromatography with tandem mass spectroscopy. Febuxostat D9 (FBS D9) was used as internal standard (IS). The analyte and internal standard were separated from human plasma by using solid phase extraction method. Zorbax Eclipse XDB, C<sub>8</sub>, 100 mm x 4.6 mm, 3.5 µm column was used and HPLC grade acetonitrile, 5 millimolar (mM) ammonium format (80: 20, v/v) as mobile phase, detected by mass spectrometry operating in positive ion and multiple reaction monitoring modes.</p><p><strong>Results</strong>:<strong> </strong>The parent and production transitions for FBS and internal standard were at m/z 317.1→261.0 and 326.1→262.0 respectively. The method was validated for system suitability, specificity, carryover effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 20.131 ng/ml to10015. 534 ng/ml with a correlation coefficient of 0.999. Precision results (%CV) across six quality control samples were within the limit. The percentage recovery of FBS and internal standard from matrix samples was found to be 76.57% and 75.03% respectively.</p><p><strong>Conclusion</strong>:<strong> </strong>Present study describes new LC-MS method for the quantification of FBS in a pharmaceutical formulation. According to validation results, it was found to be a simple, sensitive, accurate and precise method and also free from any kind of interference. Therefore the proposed analytical method can be used for routine analysis for the estimation of FBS in its formulation.</p>


2020 ◽  
Vol 42 (2) ◽  
pp. 171-171
Author(s):  
Beludari Mohammed Ishaq Beludari Mohammed Ishaq ◽  
Lingareddygari Siva Sanker Reddy Lingareddygari Siva Sanker Reddy ◽  
Gajula Mahaboob Basha Gajula Mahaboob Basha ◽  
Munna Sreenivasulu Munna Sreenivasulu ◽  
Challa Madhusudhana Chetty and Hindustan Abdul Ahad Challa Madhusudhana Chetty and Hindustan Abdul Ahad

A novel, accurate, simple and selective LC-MS/MS method was developed and validated for the determination of metoprolol in human plasma. Due to structural resemblance Propranolol was selected as internal standard. Anti coagulant used was K2 EDTA. Metoprolol, used in the therapy and management of hypertension, myocardial infraction and other cardio vascular diseases. Liquid – liquid extraction technique with tert-butyl methyl ether was applied for the extraction of analyte from human plasma. Kromasil C18 column (5and#181;, 100 and#215; 4.6 mm) with an isocratic mobile phase of 5mM Ammonium Formate pH 3.5 and Acetonitrile (15:85 % V/V) was used for the resolution. Sample ionization was done with Electrospray ionization technique in positive ion mode. Selectivity was enhanced by tandem mass spectrometric analysis via two multiple reaction monitoring (MRM) transitions, m/z 268.15→115.90 for metoprolol and 260.17→115.90 for Propranolol respectively. The linearity of the method was established over a concentration range of 1.505 – 538.254 ng/mL, in human plasma, with the precision and accuracy ranging from 4.67 to 7.41% and 90.66 to 98.15% respectively. The stability of the analyte was evaluated in plasma under different storage conditions.


Author(s):  
SUSMITHA K ◽  
MENAKA M

Objective: The main aim of the present study was to develop a sensitive liquid chromatography–electrospray ionization–tandem mass spectrometric technique for the quantitation of amprenavir in human plasma. Methods: Chromatographic separation was achieved on a reversed-phase Symmetry C18 (50 mm×4.6 mm, 3.5 μm) column with isocratic elution by acetonitrile and 0.1% v/v formic acid in the ratio of 90:10 v/v as mobile phase. Chromatographic peaks were resolved with 0.7 ml/min flow rate. Drug was extracted with ethyl acetate solvent by liquid–liquid extraction method. Monitoring of transition of m/z 506.2 and 71.0 for amprenavir and 628 and 421 for methyl-indinavir was made on multiple reaction monitoring. Results: Calibration curve of amprenavir was linear over 1–600 ng/ml concentration range with regression coefficient (r2) value of >0.99. The % relative standard deviation values were <8.5% for interday and intraday precision and accuracy. The method has excellent recovery, and the percentage recovery values of lower quality control (QC), median QC, and higher QC samples were 101.86%, 102.8%, and 99.28%, respectively. Conclusion: The drug was stable for more time at variable stability conditions, and method was successfully applicable to regular analysis of amprenavir in biological matrices.


2019 ◽  
Vol 104 (6) ◽  
pp. e43.2-e43
Author(s):  
S Magreault ◽  
O Chaussenery-Lorentz ◽  
T Storme ◽  
E Jacqz-Aigrain

BackgroundAntimicrobials are widely used in children but pediatric dose regimens are not always validated, and PK studies, required to validate dosage, are difficult to conduct in children. Low sampling volume limits the number of PK samples drawn per patient and analytical methods adapted to small volumes are not always available. Due to the wide inter-patient pharmacokinetic (PK) variability in children, particularly neonates, therapeutic drug monitoring is required to adapt dosage to individual patients. In such clinical and analytical context, our aim was to develop a unique, rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay to quantify 7 antibiotics (amoxicillin, azithromycin, cefotaxime, ciprofloxacin, meropenem, metronidazole and piperacillin) in low sample volumes (50 µL) for both routine monitoring and pharmacokinetic studies.MethodsAfter protein precipitation by acetonitrile, the antibiotics and their associated deuterated internal standard were separated on a Waters Acquity UPLC HSS T3 (100 mm x 2.1 mm; 1.8 µm). The mobile phases consisted of a gradient of ammonium acetate (pH 2.4; 5mM) and acetonitrile acidified with 0.1% (v/v) formic acid (started ratio of 93:7, v/v), run at 0.5 mL/min flow rate (total run time: 2.75 min). Ions were detected in the turbo-ion-spray-positive and multiple-reaction-monitoring modes.ResultsThis method was linear from 0.1–50 µg/mL. Accuracy and precision were evaluated using Quality Control (2, 10, 35 µg/mL). Validation of the method proved that precision, selectivity and stability were all within the recommended limits.ConclusionThis method has the advantage of a unique, efficient and standardized analytical tool for rapid measurement of 7 antibiotics in low blood volume. It has been successfully applied for routine activity and pharmacokinetic studies in children and neonates.Disclosure(s)Nothing to disclose.


Sign in / Sign up

Export Citation Format

Share Document