scholarly journals Standing on unstable surface challenges postural control of tracking tasks and modulates neuromuscular adjustments specific to task complexity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lida Mademli ◽  
Dimitra Mavridi ◽  
Sebastian Bohm ◽  
Dimitrios A. Patikas ◽  
Alessandro Santuz ◽  
...  

AbstractUnderstanding the modulations of motor control in the presence of perturbations in task conditions of varying complexity is a key element towards the design of effective perturbation-based balance exercise programs. In this study we investigated the effect of mechanical perturbations, induced by an unstable surface, on muscle activation and visuo-postural coupling, when actively tracking target motion cues of different complexity. Four postural tasks following a visual oscillating target of varying target complexity (periodic-sinusoidal vs. chaotic-Lorenz) and surface (stable-floor vs. unstable-foam) were performed. The electromyographic activity of the main plantarflexor and dorsiflexor muscles was captured. The coupling between sway and target was assessed through spectral analysis and the system’s local dynamic stability through the short-term maximum Lyapunov exponent. We found that external perturbations increased local instability and deteriorated visuo-motor coupling. Visuo-motor deterioration was greater for the chaotic target, implying that the effect of the induced perturbations depends on target complexity. There was a modulation of the neuromotor system towards amplification of muscle activity and coactivation to compensate surface-related perturbations and to ensure robust motor control. Our findings provide evidence that, in the presence of perturbations, target complexity induces specific modulations in the neuromotor system while controlling balance and posture.

2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Ryan B. Graham ◽  
Stephen H. M. Brown

To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick Crowley ◽  
Nicolas Vuillerme ◽  
Afshin Samani ◽  
Pascal Madeleine

AbstractWalking while using a mobile phone has been shown to affect the walking dynamics of young adults. However, this has only been investigated using treadmill walking at a fixed walking speed. In this study, the dynamics of over ground walking were investigated using lower trunk acceleration measured over 12 consecutive trials, following differing walking speed and mobile phone use instructions. Higher walking speed significantly increased the proportion of acceleration along the vertical measurement axis, while decreasing the proportion of acceleration along the anteroposterior axis (p < 0.001). Moreover, higher walking speed also resulted in increased sample entropy along all measurement axes (p < 0.05). When walking while texting, the maximum Lyapunov exponent increased along the anteroposterior and vertical measurement axes (p < 0.05), while sample entropy decreased significantly along the vertical axis (p < 0.001). Walking speed and mobile phone use both affect the walking dynamics of young adults. Walking while texting appears to produce a reduction in local dynamic stability and an increase in regularity, however, caution is required when interpreting the extent of this task effect, since walking speed also affected walking dynamics.


Author(s):  
James A. Norris ◽  
Anthony P. Marsh ◽  
Kevin P. Granata ◽  
Shane D. Ross

A broad objective of many lower extremity exoskeletons is to allow the wearer to expend less of their own energy for locomotion. Existing exoskeleton control algorithms are based on positive feedback. Forces are generated to augment movement initiated by the wearer. Positive feedback, however, can have destabilizing effects in dynamic systems. In fact, stability in these lower extremity exoskeletons is achieved by relying on the wearer’s neuromuscular system. Relying on the wearer to maintain stability may increase metabolic demand, which is counter productive to increasing efficiency. Thus, the goal of this study was to measure how a simple form of positive feedback that augments ankle push-off power affects both metabolic efficiency and dynamic walking stability. We developed a pair of powered ankle-foot orthoses (PAFOs) similar in design to Ferris, et al. (J. Appl. Biomech. 21, 189–197, 2005). Nine young healthy adults (23.3±1.6 years) walked on a treadmill in the PAFOs under two conditions: (1) with and (2) without push-off power assistance. Metabolic energy expenditure was calculated using indirect calorimetry. Walking stability was quantified using techniques for studying stability of dynamic system trajectories. The maximum Lyapunov exponent for assessing local dynamic stability, and the maximum Floquet multiplier magnitude for assessing orbital stability were calculated from foot and shank kinematics for each condition. Greater Lyapunov exponents and Floquet multipliers indicate decreased stability. Walking with mechanically generated push-off power increased metabolic efficiency (2.58±0.39 to 2.97±0.38, p&lt;0.01), did not affect local dynamic stability (0.14±0.02 to 0.14±0.02, p = 0.77), but decreased orbital dynamic stability (0.43±0.03 to 0.48±0.06, p = 0.05). This study provides evidence that positive feedback can negatively affect stability. Further investigations into understanding stability of movement will be necessary for the design of controllers for powered lower extremity exoskeletons.


Author(s):  
Seong Hyun Moon ◽  
Christopher Frames ◽  
Rahul Soangra ◽  
Thurmon Lockhart

Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stability of the lower extremity of five subjects as they performed a simulated rucksack march on a treadmill. The Motek Gait Real-time Interactive Laboratory (GRAIL) was utilized to replicate the environment of the rucksack march. The first walking trial was without a rucksack and the second set was executed with the All-Purpose Lightweight Individual Carrying Equipment (ALICE), an older version of the rucksack, and the third set was executed with the newer rucksack version, Modular Lightweight Load Carrying Equipment (MOLLE). In this experiment, the Inertial Measurement Unit (IMU) system, Dynaport was used to measure the ambulatory data of the subject. This experiment required subjects to walk continuously for 200 seconds with a 20kg rucksack, which simulates the real rucksack march training. To determine the dynamic stability of different load carriage and normal walking condition, Local Dynamic Stability (LDS) was calculated to quantify its stability. The results presented that comparing Maximum Lyapunov Exponent (LyE) of normal walking was significantly lower compared to ALICE (P=0.000007) and MOLLE (P=0.00003), however, between ALICE and MOLLE rucksack walking showed no significant difference (P=0.441). The five subjects showed significantly improved dynamic stability when walking without a rucksack in comparison with wearing the equipment. In conclusion, we discovered wearing a rucksack result in a significant (P <  0.0001) reduction in dynamic stability.


2014 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Philippe Terrier ◽  
Fabienne Reynard

Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73–0.81) and slightly higher in barefoot walking condition (ICC: 0.81–0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.


Author(s):  
Jian Liu ◽  
Thurmon E. Lockhart ◽  
Kevin Granata

Occupational load carrying tasks are considered one of the major factors contributing to slip and fall injuries. The objective of the current study was to explore the feasibility to assess the stability changes associated with load carrying by local dynamic stability measures. Twenty-five young participants were involved in a treadmill walking study, with their trunk acceleration profiles measured wirelessly by a tri-axial accelerometer. Finite time local dynamic stability was quantified by maximum Lyapunov exponents (maxLE). The results showed a significant increase in long term maxLE in load condition, indicating the declined local dynamic stability due to the load carrying. Thus, current study confirmed the discriminative validity and sensitivity of local dynamic stability measure and its utility in the load carrying scenario.


2021 ◽  
Author(s):  
Christopher Bailey ◽  
Thomas Uchida ◽  
Julie Nantel ◽  
Ryan Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (e.g., RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of Speed and Swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good–excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor–moderate for DFAα and SaEn. Modeled Speed and Swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angles and several motor variability features.


Sign in / Sign up

Export Citation Format

Share Document