scholarly journals Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marialetizia Palomba ◽  
Simonetta Mattiucci ◽  
Fabio Crocetta ◽  
David Osca ◽  
Mario Santoro

AbstractAscaridoid nematodes comprise a wide range of heteroxenous parasites infecting top fish predators and marine mammals as definitive hosts, with crustaceans, squids, and fishes acting as intermediate/paratenic hosts. Limited data exist on the species and role of several intermediate and paratenic hosts in the life cycle of these parasites. In the aim of adding knowledge on the role of squid species in their life cycle, we have here investigated the larval ascaridoid nematodes collected from the deep-sea umbrella squid Histioteuthis bonnelli and the reverse jewel squid Histioteuthis reversa captured in the Central Mediterranean Sea (Tyrrhenian Sea). Morphological study and sequence analysis of the internal transcribed spacer (ITS) regions of the ribosomal DNA (rDNA) and the mitochondrial cytochrome c oxidase subunit 2 (mtDNA cox2) gene locus revealed the occurrence of Anisakis physeteris and of an unidentified species of the genus Lappetascaris. Sequence analysis revealed that specimens of Lappetascaris from both squid species matched at 100% sequences previously deposited in GenBank from larval ascaridoids collected in octopuses of the genus Eledone of the Mediterranean Sea. The Bayesian inference tree topology obtained from the analysis of the fragments amplified showed that Lappetascaris specimens were included in a major clade comprising Hysterothylacium species collected in fishes of the families Xiphiidae and Istiophoridae. As regards the site of infection in the squid host species, A. physeteris larvae predominated (60.7%) in the gonads, while those of Lappetascaris (76.3%) were found infecting the mantle musculature. The overall high values of parasitic load suggest both squid species as transmitting hosts of third stage larvae of Lappetascaris to top predator fishes, as well as the umbrella squid as an intermediate/paratenic host in the life cycle of A. physeteris in the Mediterranean Sea.

2004 ◽  
Vol 68 (S3) ◽  
pp. 117-127 ◽  
Author(s):  
Francisco Sardà ◽  
Gianfranco D'Onghia ◽  
Chrissi Yianna Politou ◽  
Joan Baptista Company ◽  
Porzia Maiorano ◽  
...  

2019 ◽  
Vol 19 (17) ◽  
pp. 11123-11142 ◽  
Author(s):  
Marc D. Mallet ◽  
Barbara D'Anna ◽  
Aurélie Même ◽  
Maria Chiara Bove ◽  
Federico Cassola ◽  
...  

Abstract. Measurements of aerosol composition and size distributions were taken during the summer of 2013 at the remote island of Lampedusa in the southern central Mediterranean Sea. These measurements were part of the ChArMEx/ADRIMED (Chemistry and Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate) framework and took place during Special Observation Period 1a (SOP-1a) from 11 June to 5 July 2013. From compact time-of-flight aerosol mass spectrometer (cToF-AMS) measurements in the size range below 1 µm in aerodynamic diameter (PM1), particles were predominately comprised of ammonium and sulfate. On average, ammonium sulfate contributed 63 % to the non-refractory PM1 mass, followed by organics (33 %). The organic aerosol was generally very highly oxidized (f44 values were typically between 0.25 and 0.26). The contribution of ammonium sulfate was generally higher than organic aerosol in comparison to measurements taken in the western Mediterranean but is consistent with studies undertaken in the eastern basin. Source apportionment of organics using a statistical (positive matrix factorization) model revealed four factors: a hydrocarbon-like organic aerosol (HOA), a methanesulfonic-acid-related oxygenated organic aerosol (MSA-OOA), a more oxidized oxygenated organic aerosol (MO-OOA) and a less oxidized oxygenated organic aerosol (LO-OOA). The MO-OOA was the dominant factor for most of the campaign (53 % of the PM1 OA mass). It was well correlated with SO42-, highly oxidized and generally more dominant during easterly air masses originating from the eastern Mediterranean and central Europe. The LO-OOA factor had a very similar composition to the MO-OOA factor but was more prevalent during westerly winds, with air masses originating from the Atlantic Ocean, the western Mediterranean and at high altitudes over France and Spain from mistral winds. The MSA-OOA factor contributed an average 12 % to the PM1 OA and was more dominant during the mistral winds. The HOA, representing observed primary organic aerosol, only contributed 8 % of the average PM1 OA during the campaign. Even though Lampedusa is one of the most remote sites in the Mediterranean, PM1 concentrations (10 ± 5 µg m−3) were comparable to those observed in coastal cities and sites closer to continental Europe. Cleaner conditions corresponded to higher wind speeds. Nucleation and growth of new aerosol particles was observed during periods of north-westerly winds. From a climatology analysis from 1999 to 2012, these periods were much more prevalent during the measurement campaign than during the preceding 13 years. These results support previous findings that highlight the importance of different large-scale synoptic conditions in determining the regional and local aerosol composition and oxidation and also suggest that a non-polluted surface atmosphere over the Mediterranean is rare.


2009 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
C. MIFSUD ◽  
M. TAVIANI ◽  
S. STOHR

The MARCOS cruise, which took place in the South Central Mediterranean Sea on board the RV ‘Urania’, resulted in the collection of 27 species of Echinodermata from shallow to bathyal depths, many from around Malta (the Fisheries Management Zone). The fauna is represented by common to rare taxa already reported from the Mediterranean with the exception of the amphi-Atlantic ophiuroid Ophiotreta valenciennesi rufescens (Koehler, 1896), recorded from the Mediterranean Basin for the first time. Odontaster mediterraneus (von Marenzeller, 1893) and Luidia sarsi Lutken, 1858 are also first records for the Maltese Islands.


Zootaxa ◽  
2020 ◽  
Vol 4743 (3) ◽  
pp. 447-450
Author(s):  
M. CAVALLARO ◽  
G. AMMENDOLIA ◽  
P. BATTAGLIA

Four specimens of Dosima fascicularis were collected from the Strait of Messina (Central Mediterranean Basin), representing the first record of the species from this locality, the second from Italian waters, and the most eastern indication of the species in the Mediterranean Sea. 


2021 ◽  
Vol 9 (8) ◽  
pp. 872
Author(s):  
Pasquale Ricci ◽  
Elisabetta Manea ◽  
Giulia Cipriano ◽  
Daniela Cascione ◽  
Gianfranco D’Onghia ◽  
...  

Understanding of cetaceans’ trophic role and the quantification of their impacts on the food web is a critical task, especially when data on their prey are linked to deep-sea ecosystems, which are often exposed to excessive exploitation of fishery resources due to poor management. This aspect represents one of the major issues in marine resource management, and trade-offs are needed to simultaneously support the conservation of cetaceans and their irreplaceable ecological role, together with sustainable fishing yield. In that regard, food web models can represent useful tools to support decision-making processes according to an ecosystem-based management (EBM) approach. This study provides a focus on the feeding activity occurrence and the trophic interactions between odontocetes and the fishery in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea), by zooming in on cetaceans’ prey of commercial interest. In particular, the quantification of trophic impacts is estimated using a food web mass-balance model that integrates information on the bathymetric displacement of both cetaceans’ prey and fishing activity. The results are discussed from a management perspective to guide future research and knowledge enhancement activities as well as support the implementation of an EBM approach.


2020 ◽  
Vol 61 (2) ◽  
pp. 223-230
Author(s):  
Michele Luca Geraci ◽  
Fabio Falsone ◽  
Danilo Scannella ◽  
Sergio Vitale

An additional record of the non-indigenous species (NIS) Seriola fasciata from the southern coast of Sicily (Central Mediterranean Sea) is here described in this note. The catch record is the first in the area and confirms the key role of the area for NIS spreading. In addition, an updated map of its spatial distribution is provided as well as a discussion on the possible misidentification and competition with the native greater amberjack Seriola dumerili.


2020 ◽  
Author(s):  
Katrin Schroeder ◽  
Sana Ben Ismail ◽  
Jacopo Chiggiato ◽  
Mireno Borghini ◽  
Stefania Sparnocchia

<p>Climate change is one of the key topics of our century. The study of processes related to climate change in the atmosphere, the open ocean, the deep sea or even in shallow coastal waters require sustained long-term observations, often deploying sophisticated and expensive equipment. According to the Deep-Ocean Observing Strategy (DOOS, http://deepoceanobserving.org/), the deep ocean (below 200 m water depth) is the least observed, but largest habitat on our planet by volume and area. With more than 90% of anthropogenic heat imbalance absorbed by the oceans, monitoring long-term changes of its heat content, and over its full depth, is essential to quantify the planetary heat budget.</p><p>The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. Straits and channels divide it into several sub-basins and the continuous monitoring of these choke points allows to intercept different water masses, and thus to document how they changed over time. This monitoring, in many cases, is done under the umbrella of the CIESM Hydrochanges program (http://www.ciesm.org/marine/programs/hydrochanges.htm). Here we report the long-term time series of physical data collected in two of these choke points: the Sardinia Channel (1900 m) and the Sicily Channel (400 m).</p><p>The Sardinia Channel allows the Western Mediterranean Deep Water (WMDW) to enter the Tyrrhenian Sea (depths > 3000 m), connecting it with the Algerian Sea (depths > 2500 m). This water mass has experienced a significant increase of heat and salt content over the past decades, due both to a gradual process and to and abrupt event, called Western Mediterranean Transition (WMT). The monitoring at the sill (1900 m) of the Sardinia Channel since 2003 shows this very clearly, and the interannual trends are significantly stronger than the global average trends.</p><p>The Sicily Channel (sill at 400 m) separates the Mediterranean in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here the thermohaline properties of the Intermediate Water (IW) are monitored since 1993, showing increasing temperature and salinity trends at least one order of magnitude stronger than those observed at intermediate depths in the global ocean.</p><p>We investigate the causes of the observed trends and in particular discuss the role of a changing climate over the Mediterranean, especially in the eastern basin, where the IW is formed. The long-term records in two Mediterranean channels reveal how fast the response to climate change can be in a marginal sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.</p>


Sign in / Sign up

Export Citation Format

Share Document