scholarly journals Deep neural network-based automatic metasurface design with a wide frequency range

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fardin Ghorbani ◽  
Sina Beyraghi ◽  
Javad Shabanpour ◽  
Homayoon Oraizi ◽  
Hossein Soleimani ◽  
...  

AbstractBeyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse design procedure of a metasurface in an ultra-wide working frequency band is presented in which the output unit cell structure can be directly computed by a specified design target. To reach the highest working frequency for training the DNN, we consider 8 ring-shaped patterns to generate resonant notches at a wide range of working frequencies from 4 to 45 GHz. We propose two network architectures. In one architecture, we restrict the output of the DNN, so the network can only generate the metasurface structure from the input of 8 ring-shaped patterns. This approach drastically reduces the computational time, while keeping the network’s accuracy above 91%. We show that our model based on DNN can satisfactorily generate the output metasurface structure with an average accuracy of over 90% in both network architectures. Determination of the metasurface structure directly without time-consuming optimization procedures, an ultra-wide working frequency, and high average accuracy equip an inspiring platform for engineering projects without the need for complex electromagnetic theory.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohammed Aliy Mohammed ◽  
Fetulhak Abdurahman ◽  
Yodit Abebe Ayalew

Abstract Background Automating cytology-based cervical cancer screening could alleviate the shortage of skilled pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and reproducibility of deep neural networks has become common among computer vision experts. In this regard, the purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image classifiers were selected from Keras Applications based on their top 1% accuracy. Results Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and 0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with 3.70%. Conclusions Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition, since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to enhance the generalizability of the models.



2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.



2017 ◽  
Author(s):  
Charlie W. Zhao ◽  
Mark J. Daley ◽  
J. Andrew Pruszynski

AbstractFirst-order tactile neurons have spatially complex receptive fields. Here we use machine learning tools to show that such complexity arises for a wide range of training sets and network architectures, and benefits network performance, especially on more difficult tasks and in the presence of noise. Our work suggests that spatially complex receptive fields are normatively good given the biological constraints of the tactile periphery.





Kybernetes ◽  
2019 ◽  
Vol 49 (9) ◽  
pp. 2335-2348 ◽  
Author(s):  
Milad Yousefi ◽  
Moslem Yousefi ◽  
Masood Fathi ◽  
Flavio S. Fogliatto

Purpose This study aims to investigate the factors affecting daily demand in an emergency department (ED) and to provide a forecasting tool in a public hospital for horizons of up to seven days. Design/methodology/approach In this study, first, the important factors to influence the demand in EDs were extracted from literature then the relevant factors to the study are selected. Then, a deep neural network is applied to constructing a reliable predictor. Findings Although many statistical approaches have been proposed for tackling this issue, better forecasts are viable by using the abilities of machine learning algorithms. Results indicate that the proposed approach outperforms statistical alternatives available in the literature such as multiple linear regression, autoregressive integrated moving average, support vector regression, generalized linear models, generalized estimating equations, seasonal ARIMA and combined ARIMA and linear regression. Research limitations/implications The authors applied this study in a single ED to forecast patient visits. Applying the same method in different EDs may give a better understanding of the performance of the model to the authors. The same approach can be applied in any other demand forecasting after some minor modifications. Originality/value To the best of the knowledge, this is the first study to propose the use of long short-term memory for constructing a predictor of the number of patient visits in EDs.



InfoMat ◽  
2020 ◽  
Author(s):  
Xiao Han ◽  
Ziyang Fan ◽  
Zeyang Liu ◽  
Chao Li ◽  
L. Jay Guo


Author(s):  
Alexander Binder ◽  
Sebastian Bach ◽  
Gregoire Montavon ◽  
Klaus-Robert Müller ◽  
Wojciech Samek


Sign in / Sign up

Export Citation Format

Share Document