scholarly journals Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Lele Deng ◽  
Jiabo Yin ◽  
Zhengke Pan ◽  
...  

AbstractGlobal warming and anthropogenic changes can result in the heterogeneity of water availability in the spatiotemporal scale, which will further affect the allocation of water resources. A lot of researches have been devoted to examining the responses of water availability to global warming while neglected future anthropogenic changes. What’s more, only a few studies have investigated the response of optimal allocation of water resources to the projected climate and anthropogenic changes. In this study, a cascade model chain is developed to evaluate the impacts of projected climate change and human activities on optimal allocation of water resources. Firstly, a large set of global climate models (GCMs) associated with the Daily Bias Correction (DBC) method are employed to project future climate scenarios, while the Cellular Automaton–Markov (CA–Markov) model is used to project future Land Use/Cover Change (LUCC) scenarios. Then the runoff simulation is based on the Soil and Water Assessment Tool (SWAT) hydrological model with necessary inputs under the future conditions. Finally, the optimal water resources allocation model is established based on the evaluation of water supply and water demand. The Han River basin in China was selected as a case study. The results show that: (1) the annual runoff indicates an increasing trend in the future in contrast with the base period, while the ascending rate of the basin under RCP 4.5 is 4.47%; (2) a nonlinear relationship has been identified between the optimal allocation of water resources and water availability, while a linear association exists between the former and water demand; (3) increased water supply are needed in the water donor area, the middle and lower reaches should be supplemented with 4.495 billion m3 water in 2030. This study provides an example of a management template for guiding the allocation of water resources, and improves understandings of the assessments of water availability and demand at a regional or national scale.

Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2013 ◽  
Vol 295-298 ◽  
pp. 2132-2137
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation. As support of food production, analysis of water resources supply and demand balance is an important part and technical support of the construction. According to some relevant calculation formulas on water resources assessment, after forecast of water demand and the calculation of water supply, in the project area of the demonstration construction of whole rural land remediation in Baishan City, the average water availability for many years is 8990.1 thousand m3 each year, in which surface water availability is 7210.6 thousand m3, groundwater availability is 1579.4 thousand m3. Water demand is 5552.4 thousand m3 in 2015, in which water demand for life 4165.2 thousand m3; water demand for agricultural irrigation is 1387.2 thousand m3. Water supply is more than water demand; the results show that there is a slight surplus of water resources in the region. The basic supply-demand balance can be achieved in conditions of the design of water supply project in the project area.


2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


2020 ◽  
Vol 12 (22) ◽  
pp. 9641
Author(s):  
Youngje Choi ◽  
Eunkyung Lee ◽  
Jungwon Ji ◽  
Jaehwang Ahn ◽  
Taesoon Kim ◽  
...  

The Seoul metropolitan area in the Han River basin is searching for sustainable water supply options after recently experiencing an extreme drought. Building a new reservoir is a common way to alleviate water shortage, but this comes at a great environmental cost. The South Korean government granted permission to add on a water supply function for the Hwacheon Reservoir, the largest hydropower reservoir in Korea, for the first time in the history. This study develops a new rule curve for the Hwacheon Reservoir to supply water and generate energy at the same time, considering the status of other reservoirs in the Han River basin. The simulation model uses two scenarios, with scenario 1 simulating historic operation and scenario 2 applying the deficit supply method. The new rule curve was formulated based on the results from scenario 2. Time-based and volumetric reliability increased by 33% and 4%, respectively, and resiliency more than doubled compared to the historic reservoir operation. This is the first case study in South Korea that demonstrates how to successfully integrate a water supply function into an existing hydropower reservoir. This study can be applied and extended to other river basins in an attempt to alleviate water shortages by adding new functions to existing reservoirs.


2012 ◽  
Vol 212-213 ◽  
pp. 609-614
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation. As support of food production, analysis of soil and water resources supply and demand balance is an important part and technical support of the construction. According to some relevant calculation formulas on water resources assessment, after forecast of water demand and the calculation of water supply, in the project area of the demonstration construction of whole rural land remediation in Fuyu County, the average water availability for many years is 70581.6 thousand m3 each year, including surface water availability 57003.3 thousand m3 and groundwater availability 13578.3 thousand m3. Water demand is 58806.2 thousand m3 in 2015; including water demand for life 5150.9 thousand m3 and water demand for agricultural irrigation 53655.3 thousand m3. Water supply is more than water demand; the basic supply-demand balance can be achieved in conditions of the design of water supply project.


Sign in / Sign up

Export Citation Format

Share Document