Analysis on Water Resources Supply and Demand Balance of Rural Land Remediation Project in Baishan City, Jilin Province

2013 ◽  
Vol 295-298 ◽  
pp. 2132-2137
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation. As support of food production, analysis of water resources supply and demand balance is an important part and technical support of the construction. According to some relevant calculation formulas on water resources assessment, after forecast of water demand and the calculation of water supply, in the project area of the demonstration construction of whole rural land remediation in Baishan City, the average water availability for many years is 8990.1 thousand m3 each year, in which surface water availability is 7210.6 thousand m3, groundwater availability is 1579.4 thousand m3. Water demand is 5552.4 thousand m3 in 2015, in which water demand for life 4165.2 thousand m3; water demand for agricultural irrigation is 1387.2 thousand m3. Water supply is more than water demand; the results show that there is a slight surplus of water resources in the region. The basic supply-demand balance can be achieved in conditions of the design of water supply project in the project area.

2012 ◽  
Vol 212-213 ◽  
pp. 609-614
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation. As support of food production, analysis of soil and water resources supply and demand balance is an important part and technical support of the construction. According to some relevant calculation formulas on water resources assessment, after forecast of water demand and the calculation of water supply, in the project area of the demonstration construction of whole rural land remediation in Fuyu County, the average water availability for many years is 70581.6 thousand m3 each year, including surface water availability 57003.3 thousand m3 and groundwater availability 13578.3 thousand m3. Water demand is 58806.2 thousand m3 in 2015; including water demand for life 5150.9 thousand m3 and water demand for agricultural irrigation 53655.3 thousand m3. Water supply is more than water demand; the basic supply-demand balance can be achieved in conditions of the design of water supply project.


2013 ◽  
Vol 295-298 ◽  
pp. 2127-2131
Author(s):  
Xiao Ling Xu ◽  
Xu Feng Liang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao

Water resources are an important influence factor of land remediation in Jilin Province. As support of food production, analysis of water resources supply and demand balance is an important part and technical support of the construction. After forecast of water demand and the calculation of water supply, in major projects areas of the demonstration construction of whole rural land remediation in Jilin province, the average water availability for many years is 736796.1 thousand m3 each year, including surface water availability 543393 thousand m3 and groundwater availability 193403.1 thousand m3.water demand is 463 694.4 thousand m3 in 2015; including water demand for life 49150 thousand m3 and water demand for agricultural irrigation 414544.4 thousand m3. Water supply is more than water demand; the results show that there is a slight surplus of water resources in the region. The basic supply-demand balance can be achieved in conditions of the design of water supply project in every project area.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Lele Deng ◽  
Jiabo Yin ◽  
Zhengke Pan ◽  
...  

AbstractGlobal warming and anthropogenic changes can result in the heterogeneity of water availability in the spatiotemporal scale, which will further affect the allocation of water resources. A lot of researches have been devoted to examining the responses of water availability to global warming while neglected future anthropogenic changes. What’s more, only a few studies have investigated the response of optimal allocation of water resources to the projected climate and anthropogenic changes. In this study, a cascade model chain is developed to evaluate the impacts of projected climate change and human activities on optimal allocation of water resources. Firstly, a large set of global climate models (GCMs) associated with the Daily Bias Correction (DBC) method are employed to project future climate scenarios, while the Cellular Automaton–Markov (CA–Markov) model is used to project future Land Use/Cover Change (LUCC) scenarios. Then the runoff simulation is based on the Soil and Water Assessment Tool (SWAT) hydrological model with necessary inputs under the future conditions. Finally, the optimal water resources allocation model is established based on the evaluation of water supply and water demand. The Han River basin in China was selected as a case study. The results show that: (1) the annual runoff indicates an increasing trend in the future in contrast with the base period, while the ascending rate of the basin under RCP 4.5 is 4.47%; (2) a nonlinear relationship has been identified between the optimal allocation of water resources and water availability, while a linear association exists between the former and water demand; (3) increased water supply are needed in the water donor area, the middle and lower reaches should be supplemented with 4.495 billion m3 water in 2030. This study provides an example of a management template for guiding the allocation of water resources, and improves understandings of the assessments of water availability and demand at a regional or national scale.


2012 ◽  
Vol 58 (4) ◽  
pp. 41-48
Author(s):  
Jan Thomas ◽  
Miroslav Kyncl ◽  
Silvie Langarová

Abstract Periods of drought represent a serious problem in the management of water resources. Currently used climatic models assume the onset of major climatic changes and periods of drought. Irrespective of whether the forecasts will be fulfilled or not, it is essential to prepare measures to ensure the supply of drinking water in dry periods. This paper deals with the preparation of water balances for the areas of the Odra and Morava River basins and the prediction of relationships between water supply and water demand in the given area.


1970 ◽  
Author(s):  
I Nyoman Sunarta ◽  
Abd. Rahman ◽  
As- Syakur

Water resources are one of the most important natural resources for human life in carrying out their various activities. Bali is a relatively a small island as well as a center for the development of tourism in Indonesia. The population as well as the number of tourists keeps increasing every year which has resulted in the water crisis problem. The development of the water crisis derived from the ratio of the amount of water supply to the amount of water demand in the Island of Bali. Water supply is determined by using the runoff coefficient method which was modified from the rational method. By co-relating the runoff coefficient with the average rainfall and the size of the island, the supply of water can be determined. The water demand is determined by using the variable of the population size and the Falkenmark indicator. The development of the water crisis is determined by comparing the amount of supply and demand of water in 2009 and 2013. The result of the calculation showed that the total water supply in Bali in 2009 amounted to 4.71 billion m3 / year and decreased to 3.57 billion m3 / year in 2013. During that period, the total water demand increased; in 2009 it amounted to 5.46 billion m3 / year and in 2013 it amounted to 6.23 billion m3 / year. Thus, Bali has experienced a water deficit in 2009 and in 2013. The condition of Bali in 2009 showed that out of the 9 districts / cities, five experienced a water deficit, whereas in 2013 it increased to 8 districts / cities that have experienced a water deficit. Therefore, Bali should take serious steps to save water resources, not only to save the tourism development, which has become the mainstay of Bali, but also for the sustainability of the Balinese people’s lives.


Author(s):  
Zheng Wang ◽  
Yue Huang ◽  
Tie Liu ◽  
Chanjuan Zan ◽  
Yunan Ling ◽  
...  

Lower reaches of the Amu Darya River Basin (LADB) is one of the typical regions which is facing the problem of water shortage in Central Asia. During the past decades, water resources demand far exceeds that supplied by the mainstream of the Amu Darya River, and has resulted in a continuous decrease in the amount of water flowing into the Aral Sea. Clarifying the dynamic relationship between the water supply and demand is important for the optimal allocation and sustainable management of regional water resources. In this study, the relationship and its variations between the water supply and demand in the LADB from the 1970s to 2010s were analyzed by detailed calculation of multi-users water demand and multi-sources water supply, and the water scarcity indices were used for evaluating the status of water resources utilization. The results indicated that (1) during the past 50 years, the average total water supply (TWS) was 271.88 × 108 m3/y, and the average total water demand (TWD) was 467.85 × 108 m3/y; both the volume of water supply and demand was decreased in the LADB, with rates of −1.87 × 108 m3/y and −15.59 × 108 m3/y. (2) percentages of the rainfall in TWS were increased due to the decrease of inflow from the Amu Darya River; percentage of agriculture water demand was increased obviously, from 11.04% in the 1970s to 44.34% in 2010s, and the water demand from ecological sector reduced because of the Aral Sea shrinking. (3) the supply and demand of water resources of the LADB were generally in an unbalanced state, and water demand exceeded water supply except in the 2010s; the water scarcity index decreased from 2.69 to 0.94, indicating the status changed from awful to serious water scarcity. A vulnerable balanced state has been reached in the region, and that water shortages remain serious in the future, which requires special attention to the decision-makers of the authority.


2018 ◽  
Vol 10 (10) ◽  
pp. 3428 ◽  
Author(s):  
Mengmeng Hao ◽  
Jingying Fu ◽  
Dong Jiang ◽  
Xiaoxi Yan ◽  
Shuai Chen ◽  
...  

Bioenergy is expected to play a key role in achieving a future sustainable energy system. Sweet sorghum-based fuel ethanol, one of the most promising bioenergy sources in China, has been receiving considerable attention. However, the conflict between sweet sorghum development and traditional water use has not been fully considered. The article presents an integrated method for evaluating water stress from sweet sorghum-based fuel ethanol in China. The region for developing sweet sorghum was identified from the perspective of sustainable development of water resources. First, the spatial distribution of the water demand of sweet sorghum-based fuel ethanol was generated with a Decision Support System for Agrotechnology Transfer (DSSAT) model coupled with Geo-Information System (GIS). Subsequently, the surplus of water resources at the provincial scale and precipitation at the pixel scale were considered during the growth period of sweet sorghum, and the potential conflicts between the supply and demand of water resources were analyzed at regional scale monthly. Finally, the development level of sweet sorghum-based fuel ethanol was determined. The results showed that if the pressure of water consumption of sweet sorghum on regional water resources was taken into account, about 23% of the original marginal land was not suitable for development of sweet sorghum-based fuel ethanol, mainly distributed in Beijing, Hebei, Ningxia, Shandong, Shanxi, Shaanxi, and Tianjin. In future energy planning, the water demand of energy plants must be fully considered to ensure its sustainable development.


2013 ◽  
Vol 448-453 ◽  
pp. 995-1001
Author(s):  
Ning Na Wang ◽  
Qin Lin Zhou

An effective management of water supply is critically significant to a countrys water utilities, and accurate prediction of water supply and demand is of key importance for water supply management. The objectives of this paper are to use Grey System Model (GSM) and Linear Regression Model to forecast the water demand and water supply respectively in China 2025, and then propose a new Optimal Allocation Model (OAM) to generate solution so that analysts and decision makers can gain insight and understanding. The two predictive models take into account four major factors including domestic development, agriculture, industries and eco-environment, calculating a deficit between water demand and water supply in China 2025. Then the OAM, which considers desalinization, irrigation saving and urban recycling, provides a feasible solution to fill the gap and an effectual management of water supply.


2014 ◽  
Vol 9 (4) ◽  
pp. 509-518
Author(s):  
R. Shahsavan ◽  
M. Shourian

Water storage using dams is a perfect solution for agricultural, industrial, drinking water supply, flood control, hydroelectric power generation, and other purposes. Integrated management of water resources involves the development, management, protection, regulation and beneficial use of surface- and ground- water resources. The reliability of water supply reservoirs depends on several factors, e.g. the physical characteristics of the reservoir, the time series of river discharge, climatic conditions, the amount of demand, and the method of operation. If a portion of a dam's volume is kept empty for flood control, the confidence values of taking the bottom water demand will be reduced. In this paper, a yield-storage model developed in a MATLAB software environment is used to determine the optimal capacity of Darband dam in northeast Iran (the study phase). The reservoir's performance with respect to demand downstream, e.g. from industry and agriculture, and for potable use, was studied, and the results compared for scenarios in flood control volume change conditions. The results show that, for a capacity of 80 Mm3, the reliability values for meeting agricultural, environmental, and potable water demand are estimated at 0.922, 0.927, and 0.942, respectively. If the reservoir's capacity is changed from 80 to 350 Mm3, the reliability values increase by only about 7%.


Sign in / Sign up

Export Citation Format

Share Document