scholarly journals North American boreal forests are a large carbon source due to wildfires from 1986 to 2016

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

AbstractWildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year−1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year−1) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.

2020 ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we use a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region is a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C yr-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C yr-1) in the region. Our simulated during-fire emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increases, combustion emission tended to switch from vegetation origin towards soil origin. Burn severity regulates post-fire C dynamics. Low severity fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the opposite trend was found under moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.


2020 ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we use a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region is a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C yr-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C yr-1) in the region. Our simulated during-fire emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increases, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the opposite trend was found under moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.


2016 ◽  
Vol 13 (2) ◽  
pp. 425-439 ◽  
Author(s):  
W. Shen ◽  
G. D. Jenerette ◽  
D. Hui ◽  
R. L. Scott

Abstract. The precipitation legacy effect, defined as the impact of historical precipitation (PPT) on extant ecosystem dynamics, has been recognized as an important driver in shaping the temporal variability of dryland aboveground net primary production (ANPP) and soil respiration. How the PPT legacy influences whole ecosystem-level carbon (C) fluxes has rarely been quantitatively assessed, particularly at longer temporal scales. We parameterized a process-based ecosystem model to a semiarid savanna ecosystem in the southwestern USA, calibrated and evaluated the model performance based on 7 years of eddy-covariance measurements, and conducted two sets of simulation experiments to assess interdecadal and interannual PPT legacy effects over a 30-year simulation period. The results showed that decreasing the previous period/year PPT (dry legacy) always increased subsequent net ecosystem production (NEP) whereas increasing the previous period/year PPT (wet legacy) decreased NEP. The simulated dry-legacy impacts mostly increased subsequent gross ecosystem production (GEP) and reduced ecosystem respiration (Re), but the wet legacy mostly reduced GEP and increased Re. Although the direction and magnitude of GEP and Re responses to the simulated dry and wet legacies were influenced by both the previous and current PPT conditions, the NEP responses were predominantly determined by the previous PPT characteristics including rainfall amount, seasonality and event size distribution. Larger PPT difference between periods/years resulted in larger legacy impacts, with dry legacies fostering more C sequestration and wet legacies more C release. The carryover of soil N between periods/years was mainly responsible for the GEP responses, while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the Re responses. These simulation results suggest that previous PPT conditions can exert substantial legacy impacts on current ecosystem C balance, which should be taken into account while assessing the response of dryland ecosystem C dynamics to future PPT regime changes.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1587
Author(s):  
Imam Basuki ◽  
J. Boone Kauffman ◽  
James T. Peterson ◽  
Gusti Z. Anshari ◽  
Daniel Murdiyarso

Deforested and converted tropical peat swamp forests are susceptible to fires and are a major source of greenhouse gas (GHG) emissions. However, information on the influence of land-use change (LUC) on the carbon dynamics in these disturbed peat forests is limited. This study aimed to quantify soil respiration (heterotrophic and autotrophic), net primary production (NPP), and net ecosystem production (NEP) in peat swamp forests, partially logged forests, early seral grasslands (deforested peat), and smallholder-oil palm estates (converted peat). Peat swamp forests (PSF) showed similar soil respiration with logged forests (LPSF) and oil palm (OP) estates (37.7 Mg CO2 ha−1 yr−1, 40.7 Mg CO2 ha−1 yr−1, and 38.7 Mg CO2 ha−1 yr−1, respectively), but higher than early seral (ES) grassland sites (30.7 Mg CO2 ha−1 yr−1). NPP of intact peat forests (13.2 Mg C ha−1 yr−1) was significantly greater than LPSF (11.1 Mg C ha−1 yr−1), ES (10.8 Mg C ha−1 yr−1), and OP (3.7 Mg C ha−1 yr−1). Peat swamp forests and seral grasslands were net carbon sinks (10.8 Mg CO2 ha−1 yr−1 and 9.1 CO2 ha−1 yr−1, respectively). In contrast, logged forests and oil palm estates were net carbon sources; they had negative mean Net Ecosystem Production (NEP) values (−0.1 Mg CO2 ha−1 yr−1 and −25.1 Mg CO2 ha−1 yr−1, respectively). The shift from carbon sinks to sources associated with land-use change was principally due to a decreased Net Primary Production (NPP) rather than increased soil respiration. Conservation of the remaining peat swamp forests and rehabilitation of deforested peatlands are crucial in GHG emission reduction programs.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 353-360 ◽  
Author(s):  
Lamptey Shirley ◽  
Li Lingling ◽  
Xie Junhong

Agriculture in the semi-arid is often challenged by overuse of nitrogen (N), inadequate soil water and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (N<sub>0</sub> – 0, N<sub>100</sub> – 100, N<sub>200</sub> – 200, N<sub>300</sub> – 300 kg N/ha) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yields. Zero nitrogen soils decreased Rs by 23% and 16% compared to N<sub>300</sub> and N<sub>200</sub> soils, respectively. However, biomass yield was greatest under N<sub>300</sub> compared with N<sub>0</sub>, which therefore translated into increased net primary production by 89% and NEP by 101% compared to N<sub>0</sub>. To a lesser extent, N<sub>200</sub> increased net primary production by 69% and net ecosystem production by 79% compared to N<sub>0</sub>. Grain yields were greatest under N<sub>300</sub> compared with N<sub>100</sub> and N<sub>0</sub>, which therefore translated into increased carbon emission efficiency (CEE) by 53, 39 and 3% under N<sub>300</sub> compared to N<sub>0</sub>, N<sub>100</sub> and N<sub>200</sub> treatments, respectively. There appears potential for 200 kg N/ha to be used to improve yield and increase CEE.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1427
Author(s):  
Chunju Cai ◽  
Zhihan Yang ◽  
Liang Liu ◽  
Yunsen Lai ◽  
Junjie Lei ◽  
...  

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.


CATENA ◽  
2016 ◽  
Vol 137 ◽  
pp. 219-228 ◽  
Author(s):  
Xiaolu Tang ◽  
Shaohui Fan ◽  
Lianghua Qi ◽  
Fengying Guan ◽  
Manyi Du ◽  
...  

2020 ◽  
Author(s):  
Carolina Olid ◽  
Jonatan Klaminder ◽  
Sylvain Monteux ◽  
Margareta Johansson ◽  
Ellen Dorrepaal

&lt;p&gt;Snow depth increases observed in some artic regions and its insulations effects have led to a winter-warming of permafrost-containing peatlands. Permafrost thaw and the temperature-dependent decomposition of previously frozen carbon (C) is currently considered as one of the most important feedbacks between the artic and the global climate system. However, the magnitude of this feedback remains uncertain because winter effects are rarely integrated and predicted from mechanisms active in both surface (young) and thawing deep (old) peat layers.&lt;/p&gt;&lt;p&gt;Laboratory incubation studies of permafrost soils, in situ carbon flux measurements in ecosystem-scale permafrost thaw experiments, or measurements made across naturally degrading permafrost gradients have been used to improve our knowledge about the net effects of winter-warming in permafrost C storage. The results from these studies, however, are biased by imprecision in long-term (decadal to millennial) effects due to the short time scale of the experiments. Gradient studies may show longer-term responses but suffer from uncertainties because measurements are usually taken during the summer, thus ignoring the long cold season. The need for robust estimates of the long-term effect of permafrost thaw on the net C balance, which integrates year-round C fluxes sets the basis of this study.&lt;/p&gt;&lt;p&gt;Here, we quantified the effects of long-term in situ permafrost thaw in the net C balance of a permafrost-containing peatland subjected to a 10-years snow manipulation experiment. In short, we used a peat age modelling approach to quantify the effect of winter-warming on net ecosystem production as well as on the underlying changes in surface C inputs and losses along the whole peat continuum. Contrary to our hypothesis, winter-warming did not affect the net ecosystem production regardless of the increased old C losses. This minimum overall effect is due to the strong reduction on the young C losses from the upper active layer associated to the new water saturated conditions and the decline in bryophytes. Our findings highlight the need to incorporate long-term year-round responses in C fluxes when estimating the net effect of winter-warming on permafrost C storage. We also demonstrate that thaw-induced changes in moisture conditions and plant communities are key factors to predicting future climate change feedbacks between the artic soil C pool and the global climate system.&lt;/p&gt;


2004 ◽  
Vol 50 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Ronggui Hu ◽  
Ryusuke Hatano ◽  
Kanako Kusa ◽  
Takuji Sawamoto

Sign in / Sign up

Export Citation Format

Share Document