scholarly journals Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guilin Shan ◽  
Wolfgang Buescher ◽  
Christian Maack ◽  
André Lipski ◽  
Ismail-Hakki Acir ◽  
...  

AbstractHigh quality silage containing abundant lactic acid is a critical component of ruminant diets in many parts of the world. Silage deterioration, a result of aerobic metabolism (including utilization of lactic acid) during storage and feed-out, reduces the nutritional quality of the silage, and its acceptance by animals. In this study, we introduce a novel non-disruptive dual-sensor method that provides near real-time information on silage aerobic stability, and demonstrates for the first time that in situ silage temperature (Tsi) and pH are both associated with preservation of lactic acid. Aerobic deterioration was evaluated using two sources of maize silage, one treated with a biological additive, at incubation temperatures of 23 and 33 °C. Results showed a time delay between the rise of Tsi and that of pH following aerobic exposure at both incubation temperatures. A 11 to 25% loss of lactic acid occurred when Tsi reached 2 °C above ambient. In contrast, by the time the silage pH had exceeded its initial value by 0.5 units, over 60% of the lactic acid had been metabolized. Although pH is often used as a primary indicator of aerobic deterioration of maize silage, it is clear that Tsi was a more sensitive early indicator. However, the extent of the pH increase was an effective indicator of advanced spoilage and loss of lactic acid due to aerobic metabolism for maize silage.

2019 ◽  
Vol 74 (4) ◽  
pp. 596-612 ◽  
Author(s):  
Alexandre Bernardi ◽  
Carla J. Härter ◽  
Antonio W. L. Silva ◽  
Ricardo A. Reis ◽  
Carlos H. S. Rabelo

1999 ◽  
Vol 65 (10) ◽  
pp. 4697-4700 ◽  
Author(s):  
H. K. Kitamoto ◽  
A. Hasebe ◽  
S. Ohmomo ◽  
E. G. Suto ◽  
M. Muraki ◽  
...  

ABSTRACT In this study, we propose a new process of adding a genetically modified killer yeast to improve the aerobic stability of silage. Previously constructed Kluyveromyces lactis killer strain PCK27, defective in growth on lactic acid due to disruption of the gene coding for phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, inhibited the growth of Pichia anomalainoculated as an aerobic spoilage yeast and prevented a rise in pH in a model of silage fermentation. This suppressive effect of PCK27 was not only due to growth competition but also due to the killer protein produced. From these results, we concluded that strain PCK27 can be used as an additive to prolong the aerobic stability of maize silage. In the laboratory-scale experiment of maize silage, the addition of a killer yeast changed the yeast flora and significantly reduced aerobic spoilage.


2020 ◽  
Vol 11 ◽  
Author(s):  
Melisa Puntillo ◽  
Mónica Gaggiotti ◽  
Juan Martín Oteiza ◽  
Ana Binetti ◽  
Ariel Massera ◽  
...  

We aimed at isolating lactic acid bacteria (LAB) from different plant materials to study their crossed-fermentation capacity in silos and to find strains able to confer enhanced aerobic stability to silage. A total of 129 LAB isolates were obtained from lucerne (alfalfa), maize, sorghum, ryegrass, rice, barley, canola, Gatton panic, Melilotus albus, soy, white clover, wheat, sunflower, oat, and moha. Four Lactiplantibacillus plantarum subsp. plantarum strains (isolated from oat, lucerne, sorghum, or maize) were selected for their growth capacity. Identity (16S sequencing) and diversity (RAPD-PCR) were confirmed. Fermentative capacity (inoculated at 104, 105, 106, 107 CFU/g) was studied in maize silage and their cross-fermentation capacity was assessed in oat, lucerne, sorghum, and maize. Heterofermentative strains with the highest acetic acid production capacity conferred higher aerobic stability to maize silages. Regardless the source of isolation, L. plantarum strains, inoculated at a rate of 106 CFU/g, were effective to produce silage from different plant materials. From more than 100 isolates obtained, the application of a succession of experiments allowed us to narrow down the number of potential candidates of silage inoculants to two strains. Based on the studies made, L. plantarum LpM15 and Limosilactobacillus fermentum LfM1 showed potential to be used as inoculants, however further studies are needed to determine their performance when inoculated together. The former because it positively influenced different quality parameters in oat, lucerne, sorghum, and maize silage, and the latter because of its capacity to confer enhanced aerobic stability to maize silage. The rest of the strains constitute a valuable collection of autochthonous strains that will be further studied in the future for new applications in animal or human foods.


2013 ◽  
Vol 22 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Szilvia Orosz ◽  
John Michael Wilkinson ◽  
Simon Wigley ◽  
Zsolt Bíró ◽  
Judit Galló

An experiment was conducted to compare a bunker silo sealing system comprising an oxygen barrier film (OB: 45μm thickness) with protective woven polypropylene with one comprising standard black polyethylene film (S; 125μm thickness) with protective tyres. Analysis of samples taken to 30 cm depth after 365 days of storage showed no differences in pH or lactic acid between the two sealing systems. There were no differences in aerobic bacterial count between silages. Whilst 2.56 log10 CFU moulds g-1 fresh weight were found in samples of silage sealed with S, no moulds were found in samples of silage sealed with OB. Aerobic stability, averaged 249 hours and 184 hours for OB and S, respectively. The OB system probably inhibited the development of the micro-organisms responsible for the initiation of aerobic deterioration to a greater extent than the standard silo sealing system. 


2013 ◽  
Vol 22 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Eva Wambacq ◽  
Joos Pieter Latré ◽  
Geert Haesaert

Aerobic spoilage of silages occurs frequently and is undesirable because it reduces both its nutritive and hygienic quality. Silage inoculants containing heterofermentative lactic acid bacteria, like Lactobacillus buchneri, have already been proven to improve aerobic stability by augmented production of acetic acid, which inhibits yeasts. In this study, the effect of L. buchneri on fermentation characteristics and aerobic stability of alfalfa-ryegrass silage, red clover silage and maize silage was assessed using microsilos. Two dosages, 1×105 and 3×105 cfu g-1 of fresh matter, were compared to untreated control silage. Inoculation with L. buchneri clearly altered the fermentation characteristics of alfalfa-ryegrass and red clover silage, resulting in a significantly higher aerobic stability at both dosages. The effects of L. buchneri inoculation on maize silage were less clear, but nevertheless the aerobic stability of maize silage inoculated with 1×105 cfu g-1 of fresh matter was significantly higher compared to the untreated silage.


2020 ◽  
Vol 15 (1) ◽  
pp. 373-378
Author(s):  
Marek Selwet

AbstractThe aim of this study is to determine the influence of a commercial bacterial inoculant (L1) and a preparation (L2) containing three Lactobacillus strains capable of producing 1,2-propanediol and short-chain fatty acids on maize silage aerobic stability improvement. The research showed that during 90-day ensilage, the applied preparations significantly reduced the content of DM, water-soluble carbohydrates (WSCs), pH and DM recovery (P < 0.05). The concentration of lactic acid (LA), acetic acid (AA) and propionic acid (PA) in the inoculated samples increased significantly (P < 0.05). 1,2-Propandiol and 1-propanol were not found in control silages (without additives). The addition of L1 and L2 significantly (P < 0.05) increased the concentration of these substances. The L1 and L2 mixtures significantly extended (P < 0.05) the silage aerobic stability.


Author(s):  
Petr Doležal ◽  
Dušan Kořínek ◽  
Jan Doležal ◽  
Václav Pyrochta

In the experiment was the effect of biological additive on the fermentation quality of crushed maize ears of two hybrids by comparing with the untreated control. The bacterial inoculant „A“ contained selected bacterial strains of Lactobacillus rhamnosus (NCIMB 30121) and Enterococcus faecium (NCIMB 30122). As effective substances of bacterial water–soluble inoculant „B“ were selected bacterial strains of Lactobacillus rhamnosus (NCIMB 30121), Lactobacillus plantarum (DSM 12836), Lactobacillus brevis (DSM 12835), Lactobacillus buchneri (DSM 12856), Pediococcus acidialactici (P. pentosaceus) (DSM 12834). The addition of inoculant „A“ in our experiment conditions increased statistically significantly (P<0.01) the pH value (4.09±0.01), resp. 4.02±0.02 in second trial with Pedro hybrid. The bacterial inoculant „B“ increased significantly (P<0.01) the contents of lactic acid (50.95±0.1.87 g/kg DM), acetic acid (18.61±0.34 g/kg DM), sum of acids (69.55±1.62 g/kg DM) and decreased (P<0.01) in the first trial the ethanol content (5.41±0.45 g/kg DM). The highest DM content (P<0.01) was in all experimental inoculated silages with additive „A“ (54.26±0.86%, and 53.56±0.54%, resp.). The bacterial inoculant „A“ increased significantly (P<0.01) in comparison with control silage in the second trial the content of lactic acid (34.66Ī2.81 g/kg DM), sum of acids (44.68±3.54 g/kg DM), the total acids content (32.87±2.88 g/kg DM), and ethanol content (17.33±0.79 g/kg DM). The inoculation positive effect was demonstrated in reduction of ethanol amount and of total acid production. The pH value of inoculated silages was not significantly lower than that in the control silage.


Sign in / Sign up

Export Citation Format

Share Document