scholarly journals Multi-channel transorbital electrical stimulation for effective stimulation of posterior retina

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangjun Lee ◽  
Jimin Park ◽  
Jinuk Kwon ◽  
Dong Hwan Kim ◽  
Chang-Hwan Im

AbstractTransorbital electrical stimulation (tES) has been studied as a new noninvasive method for treating intractable eye diseases by delivering weak electrical current to the eye through a pair of electrodes attached to the skin around the eye. Studies have reported that the therapeutic effect of tES is determined by the effective stimulation of retinal cells that are densely distributed in the posterior part of the retina. However, in conventional tES with a pair of electrodes, a greater portion of the electric field is delivered to the anterior part of the retina. In this study, to address this issue, a new electrode montage with multiple electrodes was proposed for the effective delivery of electric fields to the posterior retina. Electric field analysis based on the finite element method was performed with a realistic human head model, and optimal injection currents were determined using constrained convex optimization. The resultant electric field distributions showed that the proposed multi-channel tES enables a more effective stimulation of the posterior retina than the conventional tES with a pair of electrodes.

2021 ◽  
Vol 22 (1) ◽  
pp. 394
Author(s):  
Simone Krueger ◽  
Alexander Riess ◽  
Anika Jonitz-Heincke ◽  
Alina Weizel ◽  
Anika Seyfarth ◽  
...  

In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Maria Ida Iacono ◽  
Nikos Makris ◽  
Luca Mainardi ◽  
Leonardo M. Angelone ◽  
Giorgio Bonmassar

Deep brain stimulation (DBS) is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI) to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF) energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS) was created by an atlas-based segmentation using a 1 mm3head model (mRes) refined in the basal ganglia by a 200 μm2ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m) and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg). The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.


Author(s):  
Sergey N. Makarov ◽  
William A. Wartman ◽  
Mohammad Daneshzand ◽  
Kyoko Fujimoto ◽  
Tommi Raij ◽  
...  

AbstractBackgroundTranscranial magnetic stimulation (TMS) is currently the only non-invasive neurostimulation modality that enables painless and safe supra-threshold stimulation by employing electromagnetic induction to efficiently penetrate the skull. Accurate, fast, and high resolution modeling of the electric fields (E-fields) may significantly improve individualized targeting and dosing of TMS and therefore enhance the efficiency of existing clinical protocols as well as help establish new application domains.ObjectiveTo present and disseminate our TMS modeling software toolkit, including several new algorithmic developments, and to apply this software to realistic TMS modeling scenarios given a high-resolution model of the human head including cortical geometry and an accurate coil model.MethodThe recently developed charge-based boundary element fast multipole method (BEM-FMM) is employed as an alternative to the 1st order finite element method (FEM) most commonly used today. The BEM-FMM approach provides high accuracy and unconstrained field resolution close to and across cortical interfaces. Here, the previously proposed BEM-FMM algorithm has been improved in several novel ways.Results and ConclusionsThe improvements resulted in a threefold increase in computational speed while maintaining the same solution accuracy. The computational code based on the MATLAB® platform is made available to all interested researchers, along with a coil model repository and examples to create custom coils, head model repository, and supporting documentation. The presented software toolkit may be useful for post-hoc analyses of navigated TMS data using high-resolution subject-specific head models as well as accurate and fast modeling for the purposes of TMS coil/hardware development.


1989 ◽  
Vol 100 (4) ◽  
pp. 345-347 ◽  
Author(s):  
Ian M. Windmill ◽  
Serge A. Martinez ◽  
Christopher B. Shields ◽  
Markku Paloheimo

Facial nerve stimulation by electrical current is painful and tends to discourage serial studies. Transcutaneous magnetic stimulation of the facial nerve is painless, easily reproducible, and elicits facial muscle responses identical to electrical stimulation.


2018 ◽  
Vol 5 (7) ◽  
pp. 180319
Author(s):  
Awais Munawar Qureshi ◽  
Zartasha Mustansar ◽  
Samah Mustafa

In this paper, a detailed analysis of microwave (MW) scattering from a three-dimensional (3D) anthropomorphic human head model is presented. It is the first time that the finite-element method (FEM) has been deployed to study the MW scattering phenomenon of a 3D realistic head model for brain stroke detection. A major contribution of this paper is to add anatomically more realistic details to the human head model compared with the literature available to date. Using the MRI database, a 3D numerical head model was developed and segmented into 21 different types through a novel tissue-mapping scheme and a mixed-model approach. The heterogeneous and frequency-dispersive dielectric properties were assigned to brain tissues using the same mapping technique. To mimic the simulation set-up, an eight-elements antenna array around the head model was designed using dipole antennae. Two types of brain stroke (haemorrhagic and ischaemic) at various locations inside the head model were then analysed for possible detection and classification. The transmitted and backscattered signals were calculated by finding out the solution of the Helmholtz wave equation in the frequency domain using the FEM. FE mesh convergence analysis for electric field values and comparison between different types of iterative solver were also performed to obtain error-free results in minimal computational time. At the end, specific absorption rate analysis was conducted to examine the ionization effects of MW signals to a 3D human head model. Through computer simulations, it is foreseen that MW imaging may efficiently be exploited to locate and differentiate two types of brain stroke by detecting abnormal tissues’ dielectric properties. A significant contrast between electric field values of the normal and stroke-affected brain tissues was observed at the stroke location. This is a step towards generating MW scattering information for the development of an efficient image reconstruction algorithm.


2014 ◽  
Vol 111 (5) ◽  
pp. 1077-1087 ◽  
Author(s):  
Craig A. Atencio ◽  
Jonathan Y. Shih ◽  
Christoph E. Schreiner ◽  
Steven W. Cheung

Cochlear implant electrical stimulation of the auditory system to rehabilitate deafness has been remarkably successful. Its deployment requires both an intact auditory nerve and a suitably patent cochlear lumen. When disease renders prerequisite conditions impassable, such as in neurofibromatosis type II and cochlear obliterans, alternative treatment targets are considered. Electrical stimulation of the cochlear nucleus and midbrain in humans has delivered encouraging clinical outcomes, buttressing the promise of central auditory prostheses to mitigate deafness in those who are not candidates for cochlear implantation. In this study we explored another possible implant target: the auditory thalamus. In anesthetized cats, we first presented pure tones to determine frequency preferences of thalamic and cortical sites. We then electrically stimulated tonotopically organized thalamic sites while recording from primary auditory cortical sites using a multichannel recording probe. Cathode-leading biphasic thalamic stimulation thresholds that evoked cortical responses were much lower than published accounts of cochlear and midbrain stimulation. Cortical activation dynamic ranges were similar to those reported for cochlear stimulation, but they were narrower than those found through midbrain stimulation. Our results imply that thalamic stimulation can activate auditory cortex at low electrical current levels and suggest an auditory thalamic implant may be a viable central auditory prosthesis.


2020 ◽  
Vol 14 (1) ◽  
pp. 6-18
Author(s):  
Juan Jairo Vaca González ◽  
Juan Felipe Escobar Huertas ◽  
Diego Alexander Garzón Alvarado

Electrical stimulation is a non-invasive therapy used to stimulate chondrocyte dynamics: proliferation, migration, morphology and molecular synthesis. Some studies have evidenced the role of frequency in the generation of electric fields; however, the electrical stimulation sensed by chondrocytes when the frequency varies is not well-documented. Accordingly, a computational model was implemented to assess the frequency dependence of electric fields that stimulate chondrocytes. Cells were modelled in three different scenarios: monolayer cultures, cartilage explants and scaffolds. Chondrocytes were stimulated with 100 Vp-p at frequencies of 0.001, 1, 10, 50, 100 and 1000 kHz. Results showed that frequency is a relevant factor when considering the stimulation of biological samples, since electric fields increased as frequencies were higher. Moreover, chondrocytes experienced different electric fields in both cytoplasm and extracellular environment. This model provides relevant information about the electrical parameters to stimulate cells; in fact, it could enhance experimental procedures, predicting the stimulation that improves chondrocyte dynamics. Electric fields are a promising tool to maintain either well-structured chondrocytes or biomimetic materials used in regenerative therapies such as autologous implantation to treat hyaline cartilage injuries.


Sign in / Sign up

Export Citation Format

Share Document