scholarly journals Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vera Grotheer ◽  
Nadine Skrynecki ◽  
Lisa Oezel ◽  
Jan Grassmann ◽  
Joachim Windolf ◽  
...  

AbstractThe need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-β signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-β signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-β signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mesude Bicer ◽  
Graeme S. Cottrell ◽  
Darius Widera

AbstractAs populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Janis A. Müller ◽  
Anna Glöckle ◽  
Ali Gawanbacht ◽  
Matthias Geyer ◽  
Jan Münch ◽  
...  

ABSTRACTVIRIP has been identified as natural HIV-1 inhibitor targeting the gp41 fusion peptide. An optimized analogue (VIR-576) was effective in a phase I/II clinical trial and initial studies showed that HIV-1 resistance to VIRIP-based inhibitors has a high genetic barrier. Partially resistant CXCR4 (X4)-tropic HIV-1 NL4-3 variants could be obtained, however, after more than 15 months of passaging in MT-4 cells in the presence of another derivative (VIR-353). Sequence analyses identified the accumulation of seven mutations across the HIV-1 envelope glycoprotein but outside the gp41 fusion peptide. The authors suggested that the three initial alterations conferred resistance, while subsequent changes restored viral fitness. Here, we introduced these mutations individually and in combination into X4- and CCR5 (R5)-tropic HIV-1 constructs and determined their impact on VIR-353 and VIR-576 susceptibility, viral infectivity, replication fitness, and fusogenicity. We found that essentially all seven mutations contribute to reduced susceptibility to VIRIP-based inhibitors. HIV-1 constructs containing ≥4 changes were substantially more resistant to both VIRIP-based inhibitors and the VRC34.01 antibody targeting the fusion peptide. However, they were also much less infectious and fusogenic than those harboring only the three initial alterations. Furthermore, the additional changes attenuated rather than rescued HIV-1 replication in primary human cells. Thus, the genetic barrier to HIV-1 resistance against VIRIP-based inhibitors is higher than previously suggested, and mutations reducing viral susceptibility come at a severe fitness cost that was not rescued during long-term cell culture passage.IMPORTANCEMany viral pathogens are critically dependent on fusion peptides (FPs) that are inserted into the cellular membrane for infection. Initially, it was thought that FPs cannot be targeted for therapy because they are hardly accessible. However, an optimized derivative (VIR-576) of an endogenous fragment of α1-antitrypsin, named VIRIP, targeting the gp41 FP reduced viral loads in HIV-1-infected individuals. Characterization of HIV-1 variants selected during long-term cell-culture passage in the presence of a VIRIP derivative suggested that just three mutations in the HIV-1 Env protein might be sufficient for VIRIP resistance and that four subsequent changes restored viral fitness. Here, we show that all seven mutations contribute to reduced viral susceptibility to VIRIP-based inhibitors and demonstrate that the additional changes strongly impair rather than rescue HIV-1 infectivity, fusogenicity, and replication fitness. High genetic barrier to resistance and severe fitness cost support further clinical development of this class of antiviral agents.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ute Hempel ◽  
Katrin Müller ◽  
Carolin Preissler ◽  
Carolin Noack ◽  
Sabine Boxberger ◽  
...  

Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesisin vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated proteinγ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts.


2018 ◽  
Author(s):  
Carolin Göbel ◽  
Roman Goetzke ◽  
Thomas Eggermann ◽  
Wolfgang Wagner

AbstractReplicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.


2020 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Veronique Gaschen ◽  
Franck Forterre ◽  
Ulrich Rytz ◽  
Michael H Stoffel ◽  
...  

In the last decades, the scientific community spared no effort to elucidate the therapeutic potential of mesenchymal stromal cells (MSCs). Unfortunately, in vitro cellular senescence occurring along with a loss of proliferative capacity is a major drawback in view of future therapeutic applications of these cells in the field of regenerative medicine. Even though insight into the mechanisms of replicative senescence in human medicine has evolved dramatically, knowledge about replicative senescence of canine MSCs is still scarce. Thus, we developed a high-content analysis workflow to simultaneously investigate three important characteristics of senescence in canine adipose-derived MSCs (cAD-MSCs): morphological changes, activation of the cell cycle arrest machinery and increased activity of the senescence-associated beta-galactosidase. We took advantage of this tool to demonstrate that passaging of cAD-MSCs results in the appearance of a senescence phenotype and proliferation arrest. This was partially prevented upon immortalization of these cells using a newly designed PiggyBac(TM) Transposon System, which allows for the expression of the human polycomb ring finger proto-oncogene BMI1 and the human telomerase reverse transcriptase under the same promotor. Our results indicate that cAD-MSCs immortalized with this new vector maintain their proliferation capacity and differentiation potential for a longer time than untreated cAD-MSCs. This study not only offers a workflow to investigate replicative senescence in eukaryotic cells with a high-content analysis approach but also paves the way for a rapid and effective generation of immortalized MSC lines. This promotes a better understanding of these cells in view of future applications in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document