scholarly journals Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanka Singh ◽  
Santosh Pandit ◽  
Carsten Jers ◽  
Abhayraj S. Joshi ◽  
Jørgen Garnæs ◽  
...  

AbstractWith multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of − 15.3 mV and nanoparticles size ranging from 10–40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods.

Química Nova ◽  
2021 ◽  
Author(s):  
Fabio Bazilio ◽  
Cristiane Silva ◽  
Lísia Santos ◽  
Santos Vicentini ◽  
Silvana Jacob ◽  
...  

DETECTION AND QUANTIFICATION OF SILVER NANOPARTICLES BY spICP-MS. The growing interest in nanotechnology has led to an increase in the production and application of nanoparticles worldwide. Due to the unique functional properties of nanoparticles, these materials are being used by many industries, including the agricultural and food sectors. Among the commercially available nanomaterials, it is possible to highlight those produced with silver nanoparticles. One of the most promising techniques for the analysis of metallic nanoparticles is the Inductively coupled plasma mass spectrometry (ICP-MS) performed in single particle mode (spICP-MS). However, the use of the technique in the detection and measurement of nanoparticles requires that the equipment be operated differently than when used to analyze dissolved metal solutions. Thus, this article presents the use of the spICP-MS technique for the measurement and quantification of nanoparticles, as well as their validation. The method proved to be adequate for the purpose, presenting a satisfactory result for the selectivity test and recovery of 83.7 (40 nm) and 77.6% (80 nm). The detection limits, determined for the most frequent size, dissolved silver concentration and particle concentration, were 17.5 nm, 0.736 ng mL-1,146 particles mL-1, respectively. Thus, the results obtained indicated the possibility of using the technique to determine the size and concentration of silver nanoparticles.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2677 ◽  
Author(s):  
Nadia Waegeneers ◽  
Sandra De Vos ◽  
Eveline Verleysen ◽  
Ann Ruttens ◽  
Jan Mast

E174 (silver) is a food additive that may contain silver nanoparticles (AgNP). Validated methods are needed to size and quantify these particles in a regulatory context. However, no validations have yet been performed with food additives or real samples containing food additives requiring a sample preparation step prior to analysis. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) method was developed and validated for sizing and quantifying the fraction of AgNP in E174 and in products containing E174, and associated uncertainties related to sample preparation, analysis and data interpretation were unraveled. The expanded measurement uncertainty for AgNP sizing was calculated to be 16% in E174-containing food products and increased up to 23% in E174 itself. The E174 food additives showed a large silver background concentration combined with a relatively low number of nanoparticles, making data interpretation more challenging than in the products. The standard uncertainties related to sample preparation, analysis, and challenging data interpretation were respectively 4.7%, 6.5%, and 6.0% for triplicate performances. For a single replicate sample, the uncertainty related to sample preparation increased to 6.8%. The expanded measurement uncertainty related to the concentration determination was 25–45% in these complex samples, without a clear distinction between additives and products. Overall, the validation parameters obtained for spICP-MS seem to be fit for the purpose of characterizing AgNP in E174 or E174-containing products.


2018 ◽  
Vol 33 (7) ◽  
pp. 1256-1263 ◽  
Author(s):  
Ana López-Serrano Oliver ◽  
Sabine Baumgart ◽  
Wolfram Bremser ◽  
Sabine Flemig ◽  
Doreen Wittke ◽  
...  

A promising analytical methodology is proposed to study nanoparticle-cell interactions providing information of the number of NPs internalized by cells or externally bound to the cell surface.


Metallomics ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 1399-1406 ◽  
Author(s):  
Yuchuan Wang ◽  
Ligang Hu ◽  
Xinming Yang ◽  
Yuen-Yan Chang ◽  
Xuqiao Hu ◽  
...  

Quantitative analysis of metal selectivity of overexpressed metalloproteins in cells by GE-ICP-MS.


Sign in / Sign up

Export Citation Format

Share Document