scholarly journals Discrimination methods for diesel origin by analyzing fatty acid methyl ester (FAME) composition in diesel-contaminated soil

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myoung-Soo Ko ◽  
Seunghak Lee

AbstractThe biodiesel containing fatty acid methyl esters (FAMEs) are blended with refined diesel products. Here, we evaluate relative FAME composition ratio as a potential index to discriminate the pollution origin in diesel-contaminated soil. Artificially contaminated soil was prepared to mimic the release of petroleum products using four different refined diesels; in addition, the contaminated soil was put under natural weathering conditions. The variations in the relative FAME composition ratio was compared with those of the corresponding diesel origin using principal component analysis (PCA) for 60 days. All soil samples could be classified into four groups according to diesel origin using two principal components. The proposed method can be used to discriminate the specific diesel pollution origin in contaminated soils.

Author(s):  
B. Jeeva ◽  
C.R. Rajashekar

This experimental study is focused on the significance of Fatty Acid Methyl Ester (FAME) composition for usage of biodiesel in diesel engines. Karanja Oil Methyl Esters (KOME) from two different feed stocks were selected for the study. FAME composition was analysed by gas chromatography and physical, chemical properties were evaluated. KOME 30% blends with diesel were analysed for performance and Emission characteristics. The present work predicted that H30 sample 1 with higher unsaturation has resulted in higher peak pressure, higher NOx emissions, as compared to H30 sample 2 with lower unsaturation fatty acid methyl ester composition.


2003 ◽  
Vol 31 (2) ◽  
pp. 133-140 ◽  
Author(s):  
A Ozbek ◽  
O Aktas

The cellular fatty acid profiles of 67 strains belonging to three different species of the genus Mycobacterium were determined by gas chromatography of the fatty acid methyl esters, using the MIDI Sherlock® Microbial Identification System (MIS). The species M. tuberculosis, M. xenopi and M. avium complex were clearly distinguishable and could be identified based on the presence and concentrations of 12 fatty acids: 14:0, 15:0, 16:1ω7c, 16:1ω6c, 16:0, 17:0, 18:2ω6,9c, 18:1ω9c, 18:0, 10Me-18:0 tuberculostearic acid, alcohol and cyclopropane. Fatty acid analysis showed that there is great homogeneity within and heterogeneity between Mycobacterium species. Thus the MIS is an accurate, efficient and relatively rapid method for the identification of mycobacteria.


2015 ◽  
Vol 787 ◽  
pp. 766-770 ◽  
Author(s):  
J. Thangaraja ◽  
S. Rajkumar

Biodiesel is a renewable fuel and an attractive alternative to replace fossil diesel without major engine modifications. However, the emissions of oxides of nitrogen (NOx) from biodiesel fuelled engines are reported to be higher compared to diesel engine. The characteristics of biodiesel are known to depend on their fatty acid methyl ester (FAME) contents which vary with the feedstock. Thus the contribution of saturation and unsaturation of pure components of fatty acid methyl esters on NOx formation warrants a systematic investigation. This paper attempts to relate the composition of biodiesel with NOx formation. For this purpose, the NO formation from pure fatty acid methyl esters are predicted using extended Zeldovich reaction scheme. Also, the experiments are conducted for measuring oxides of nitrogen from a compression ignition engine operated using neat palm and karanja methyl esters and their blends providing biodiesel combinations of varying degree of saturation for investigation. The measured NOx concentrations are compared with the corresponding predictions to affirm the influence of fatty acid methyl ester on engine NOx characteristics. The results clearly indicate that the change in degree of saturation influences the NOx formation and an increase in the degree of saturation of biodiesel decreases the engine NOx emission.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 972-985 ◽  
Author(s):  
MAREK GOŁĘBIOWSKI ◽  
MAGDALENA CERKOWNIAK ◽  
MAŁGORZATA DAWGUL ◽  
WOJCIECH KAMYSZ ◽  
MIECZYSŁAWA I. BOGUŚ ◽  
...  

SUMMARYThe composition of the fatty acid methyl ester (FAME) and alcohol fractions of the cuticular and internal lipids of Calliphora vomitoria larvae, pupae and male/female adults was obtained by separating these two fractions by HPLC–LLSD and analysing them quantitatively using GC–MS. Analysis of the cuticular lipids of the worldwide, medically important ectoparasite C. vomitoria revealed 6 FAMEs with odd-numbered carbon chains from C15:0 to C19:0 in the larvae, while internal lipids contained 9 FAMEs ranging from C15:1 to C19:0. Seven FAMEs from C15:0 to C19:0 were identified in the cuticular lipids of the pupae, whereas the internal lipids of the pupae contained 10 FAMEs from C13:0 to C19:0. The cuticular lipids of males and females and also the internal lipids of males contained 5, 7 and 6 FAMEs from C15:0 to C19:0 respectively. Seven FAMEs from C13:0 to C19:0 were identified in the internal lipids of females, and 7, 6, 5 and 3 alcohols were found in the cuticular lipids of larvae, pupae, males and females respectively. Only saturated alcohols with even-numbered carbon chains were present in these lipids. Only 1 alcohol (C22:0) was detected in the internal lipids of C. vomitoria larvae, while just 4 alcohols from – C18:0 to C24:0 – were identified in the internal lipids of pupae, and males and females. We also identified glycerol and cholesterol in the larvae, pupae, males and females of C. vomitoria. The individual alcohols and FAMEs, as well as their mixtures isolated from the cuticular and internal lipids of larvae, pupae, males and females of C. vomitoria, demonstrated antimicrobial activity against entomopathogenic fungi.


2003 ◽  
Vol 58 (7-8) ◽  
pp. 502-504 ◽  
Author(s):  
Ahmet C. Gören ◽  
Gökhan Bilsel ◽  
Mehmet Altun ◽  
Fatih Satıl

Abstract The chemical composition of fatty acid methyl esters (FAMEs) from seeds of S. thymbra and S. cuneifolia were analyzed by GC/MS. 7 FAMEs were identified from the seeds of S. thymbra mainly as 9-octadecenoic acid methyl ester (43.9%), hexadecanoic acid methyl ester (11.4%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (30.2%), and octadecanoic acid methyl ester (14.1%), while from the seed of S. cuneifolia 10 FAMEs were obtained with the main components, similar to S. thymbra. These were identified as 9-octadecenoic acid methyl ester (10.1%), hexadecanoic acid methyl ester (methyl palmitate, 34.6%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (6.3%) and octadecanoic acid methyl ester (1.8%).


Sign in / Sign up

Export Citation Format

Share Document