scholarly journals Acoustoelectric current in graphene nanoribbon due to Landau damping

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. A. Dompreh ◽  
K. W. Adu ◽  
D. Sakyi-Arthur ◽  
N. G. Mensah ◽  
S. Y. Mensah ◽  
...  

AbstractWe perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., $$ql \gg 1$$ q l ≫ 1 ($$q$$ q is the acoustic wavenumber and l is the mean free path). We investigate the Landau damping of acoustic phonons ($$LDOAP$$ LDOAP ) in graphene nanoribbons, which leads to acoustoelectric current generation. Under a non-quantized field with drift velocity, we observed an acoustic phonon energy quantization that depends on the energy gap, the width, and the sub-index of the material. An effect similar to Cerenkov emission was observed, where the electron absorbed the confined acoustic phonon energy, causing the generation of acoustoelectric current in the graphene nanoribbon. A qualitative analysis of the dependence of the absorption coefficient and the acoustoelectric current on the phonon frequency is in agreement with experimental reports. We observed a shift in the peaks when the energy gap and the drift velocity were varied. Most importantly, a transparency window appears when the absorption coefficient is zero, making graphene nanoribbons a potential candidate for use as an acoustic wave filter with applications in tunable gate-controlled quantum information devices and phonon spectrometers.

2021 ◽  
Author(s):  
K. A. Dompreh ◽  
K.W. Adu ◽  
D. Sakyi-Arthur ◽  
N. G. Mensah ◽  
S. Y. Mensah ◽  
...  

Abstract We perform self-consistent analysis of the Boltzmann transport equation for momentum and energy in the hypersound regime i.e., ql >> 1 (q is the acoustic wavenumber and l is the mean free path). Here, we investigate Landau damping of acoustic phonons (LDOAP) in graphene nanoribbon that leads to acoustoelectric current generation. Under a non-quantized field with drift velocity, we observed an acoustic phonon energy quantization which depends on the energy gap, the width and the sub-index of the material. An effect similar to Cerenkov emission was observed where the electron absorbs the confined acoustic phonons energy, causing the generation of acoustoelectric current in Graphene Nanoribbon. A qualitative analysis of the absorption and versus phonon frequency is in agreement with experimental reports. We observed a shift in the peaks when the energy gap and the drift velocity were varied. Most importantly, a transparency window appears when making graphene nanoribbon a potential candidate as an acoustic wave filter with applications in phonon spectrometers and also as tunable gate-controlled quantum information device.


2021 ◽  
Author(s):  
Andrii Iurov ◽  
Liubov Zhemchuzhna ◽  
Godfrey Gumbs ◽  
Danhong Huang ◽  
Paula Fekete ◽  
...  

Abstract We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for α − T3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter α of an α − T3 lattice has a strong effect on the plasmons which makes our material distinguished from graphene nanoribbons. Our results for the electronic and collective properties of α − T3 nanoribbons are expected to find numerous applications in the development of the next-generation electronic, nano-optical and plasmonic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrii Iurov ◽  
Liubov Zhemchuzhna ◽  
Godfrey Gumbs ◽  
Danhong Huang ◽  
Paula Fekete ◽  
...  

AbstractWe have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for $$\alpha -{\mathcal {T}}_3$$ α - T 3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter $$\alpha $$ α of an $$\alpha -{\mathcal {T}}_3$$ α - T 3 lattice has a strong effect on the plasmons which makes our material distinguished from graphene nanoribbons. Our results for the electronic and collective properties of $$\alpha -{\mathcal {T}}_3$$ α - T 3 nanoribbons are expected to find numerous applications in the development of the next-generation electronic, nano-optical and plasmonic devices.


2012 ◽  
Vol 229-231 ◽  
pp. 205-209 ◽  
Author(s):  
Maryam Farrokhi ◽  
Rahim Faez ◽  
Saeed Haji Nasiri ◽  
Bita Davoodi

Achieving dense off-chip interconnection with satisfactory electrical performance is emerging as a major challenge in advanced system engineering. Graphene nanoribbons (GNRs) have been recently proposed as one of the potential candidate materials for both transistors and interconnect. In addition, development is still underway for alternative materials and processes for high aspect ratio (AR) contacts. Studding the effect of varying aspect ratio on relative stability of graphene nanoribbon interconnects is an important viewpoint in performance evaluation of system. In this paper, Nyquist stability analysis based on transmission line modeling (TLM) for GNR interconnects is investigated. In this analysis, the dependence of the degree of relative stability for multilayer GNR (MLGNR) interconnects on the aspect ratio has been acquired. It is shown that, with increasing the aspect ratio of each ribbon, MLGNR interconnects become more unstable.


Author(s):  
Jose Eduardo Barcelon ◽  
Marco Smerieri ◽  
Giovanni Carraro ◽  
Pawel Wojciechowski ◽  
Luca Vattuone ◽  
...  

Graphene nanoribbons (GNRs) are at the frontier of research on graphene materials since the 1D quantum confinement of electrons allows for the opening of an energy gap.


2018 ◽  
Vol 29 (31) ◽  
pp. 315705 ◽  
Author(s):  
Toyo Kazu Yamada ◽  
Hideto Fukuda ◽  
Taizo Fujiwara ◽  
Polin Liu ◽  
Kohji Nakamura ◽  
...  

Author(s):  
Nidhal Nissan Jandow

This work presents the effect of Cu-doping on some optical properties of Cu:NiO thin film prepared by spray pyrolysis technique. UV-Visible spectrophotometer in the range 380-900 nm used to determine the absorbance spectra for various Cu-doping of Cu:NiO thin film. The transmittance and energy gap are decreased with increasing Cu-doping in the prepared films, while absorption coefficient, extinction coefficient, and skin depth are increased with increasing Cu-doping.


2020 ◽  
Vol 17 (35) ◽  
pp. 1148-1158
Author(s):  
Mohammed L. JABBAR ◽  
Kadhum J. AL-SHEJAIRY

Chemical doping is a promising route to engineering and controlling the electronic properties of the zigzag graphene nanoribbon (ZGNR). By using the first-principles of the density functional theory (DFT) calculations at the B3LYP/ 6-31G, which implemented in the Gaussian 09 software, various properties, such as the geometrical structure, DOS, HOMO, LUMO infrared spectra, and energy gap of the ZGNR, were investigated with various sites and concentrations of the phosphorus (P). It was observed that the ZGNR could be converted from linear to fractal dimension by using phosphorus (P) impurities. Also, the fractal binary tree of the ZGNR and P-ZGNR structures is a highlight. The results demonstrated that the energy gap has different values, which located at this range from 0.51eV to 1.158 eV for pristine ZGNR and P-ZGNR structures. This range of energy gap is variable according to the use of GNRs in any apparatus. Then, the P-ZGNR has semiconductor behavior. Moreover, there are no imaginary wavenumbers on the evaluated vibrational spectrum confirms that the model corresponds to minimum energy. Then, these results make P-ZGNR can be utilized in various applications due to this structure became more stable and lower reactivity.


2005 ◽  
Vol 2 (2) ◽  
pp. 231-235
Author(s):  
Baghdad Science Journal

Studied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated


Sign in / Sign up

Export Citation Format

Share Document