scholarly journals Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ningguang Dong ◽  
Guanglong Hu ◽  
Yunqi Zhang ◽  
Jianxun Qi ◽  
Yonghao Chen ◽  
...  

AbstractThis study characterized the effect of green manures (February orchid, hairy vetch, rattail fescue and a no-green-manure control) and the termination method (flail or disk) on nutrient contents, enzyme activities, microbial biomass, microbial community structure of rhizosphere soil and vegetative growth of walnut tree. All three selected green manures significantly enhanced the water content, organic C, total N and available P. The rattail fescue significantly decreased the mineral N. Total organic C, total N, mineral N and available P were significantly greater under flail than under disk. Hairy vetch and February orchid significantly improved levels of soil β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activity, whereas rattail fescue improved only β-glucosidase activity. All of the green manures significantly decreased phenoloxidase activity. β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activities were significantly greater under flail relative to disk. The termination method had no significant effect on phenoloxidase activity. The different types of green manures and termination methods significantly altered the soil microbial biomass and microbial community structure. The green-manure treatments were characterized by a significantly greater abundance of Gram-positive (Gram +) bacteria, total bacteria and saprophytic fungi compared to the control. Hairy vetch significantly decreased the abundance of arbuscular mycorrhizal fungi (AMF) while February orchid and rattail fescue increased their abundance compared to the no-green-manure treatment. The abundance rates of Gram+ bacteria, actinomycetes, saprophytic fungi and AMF were significantly greater in soils under flail than under disk. In terms of vegetative growth of walnut tree, hairy vetch showed the greatest positive effects. The growth of walnut tree was significantly greater under flail relative to disk. Our results indicate that green-manure application benefits the rhizosphere soil micro-ecology, rhizosphere soil nutrient contents and tree growth. Overall, the hairy vetch and flail combined treatment is recommended for walnut orchards in northern China.

2020 ◽  
Vol 17 (1) ◽  
pp. 67
Author(s):  
Oteng Haridjaja

Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leacheds by water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrient leached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiple strip cropping of upland rice or soybean (Glycine max) were planted to improve soil physical characterictic on cacao plantation as a main plant. The expriment were conducted with treatments as 10-15% and 40-45% slopes, 5-7 months and 25-27 months cacao ages (as main plants). As sub plots are T1 as a monoculture which to be cleaning under the plant canopy, T2 as a multiple strip cropping of upland rice or soybean, T3 as a combination of T2 and A. Pintoi strip. The results showed that  total N, P2O5, and K2O and organic-C contents in water run off and soil sediments indicated that T3 >T2 >T1 treatment, with the contents of each nutrient: T3 (total N 0.18%; 24.87 mg 100 g-1 P2O5: K2O 15.16 mg 100 g-1), T1 (total N 0.16%, 22.39 mg 100g-1 P2O5, K2O 11.50 mg 100g-1).  The total N, P2O5, K2O and organic-C soil contents < accumulation nutrient contents of total water run off and soil sediment transport. All of treathments have sediment enrichment ratios > 1.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Arum Asri Trisnastuti ◽  
Edi Purwanto ◽  
Ari Susilowati

Organic farming can increase the diversity of soil bacterial. This research aimed to compare the profile of microbial community of organic and conventional rice fields in early (0 Day After Planting/DAP), mid (15 DAP), and late (45 DAP) fertilizer application period. The total DNA genome from the soil sample was extracted then analyzed metagenomically using Next Generation Sequencing (NGS). There was nine genus of bacteria found in high relative abundance, 95.28%, while 4.72% included in Domain of Archaea (genus Methanosaeta). Phylum of Firmicutes (genus Clostridium has 24.50% relative abundance, Bacillus 11.90%, Lactobacillus 9.69%); Proteobacteria (genus Defluviicoccus 12.10%, Buchnera 18.46%, Rosenbergiella 2.46%); and Actinobacteria (genus Nocardioides 12.21%, and Streptomyces 3.96%). Meanwhile, the average plant height of organic rice fields was shorter than conventional rice fields got directly measured coincided with soil sampled. Based on alpha and beta diversity analysis, the highest community diversity and abundance were found in organic rice field soil samples taken at 45 DAP, i.e., at the end of the fertilizer application period. However, in both organic and conventional rice field soils, there was almost no significant difference in the bacterial community, so it impacts that organic and conventional systems do not make a real difference in the total N, P available, CEC, and pH values. It makes a significant difference in organic C and organic matters.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Soo Ying Ho ◽  
Mohd Effendi Bin Wasli ◽  
Mugunthan Perumal

A study was conducted in the Sabal area, Sarawak, to evaluate the physicochemical properties of sandy-textured soils under smallholder agricultural land uses. Study sites were established under rubber, oil palm, and pepper land uses, in comparison to the adjacent secondary forests. The sandy-textured soils underlain in all agricultural land uses are of Spodosols, based on USDA Soil Taxonomy. The soil properties under secondary forests were strongly acidic with poor nutrient contents. Despite higher bulk density in oil palm farmlands, soil properties in rubber and oil palm land uses showed little variation to those in secondary forests. Conversely, soils under pepper land uses were less acidic with higher nutrient contents at the surface layer, especially P. In addition, soils in the pepper land uses were more compact due to human trampling effects from regular farm works at a localized area. Positive correlations were observed between soil total C and soil total N, soil exchangeable K, soil sum of bases, and soil effective CEC, suggesting that soil total C is the determinant of soil fertility under the agricultural land uses. Meanwhile, insufficient K input in oil palm land uses was observed from the partial nutrient balances estimation. In contrast, P and K did not remain in the soils under pepper land use, although the fertilizers application by the farmers was beyond the crop uptake and removal (harvesting). Because of the siliceous sandy nature (low clay contents) of Spodosols, they are poor in nutrient retention capacity. Hence, maintaining ample supply of organic C is crucial to sustain the productivity and fertility of sandy-textured soils, especially when the litterfall layers covering the E horizon were removed for oil palm and pepper cultivation.


2014 ◽  
Vol 60 (No. 6) ◽  
pp. 249-254 ◽  
Author(s):  
D. Liu ◽  
S. Fang ◽  
Y. Tian ◽  
Chang SX

Plant roots strongly influence C and N availability in the rhizosphere via rhizodeposition and uptake of nutrients. An in situ rhizobox approach was used to compare rhizosphere effects of different tree species and clones on N cycling under seasonally flooded soil. We examined N mineralization and nitrification rates, inorganic N, and microbial biomass C (MBC) and N (MBN) in rhizosphere and bulk soils of three poplar clones, alder, and willow plantations in southeast China. Significant differences in soil pH, total N, soil organic C, MBC, MBN, and MBC/MBN were found between bulk and rhizosphere soils except alder. Compared to bulk soil, the net N mineralization and nitrification rates in rhizosphere soil across all tree species and clones increased by 124&ndash;228% and 108&ndash;216%, respectively. However, NO<sub>3</sub><sup>&ndash;</sup>-N was depleted in the rhizosphere soil mainly owing to the root uptake and rhizosphere microbial immobilization. The magnitude of rhizosphere effects on N transformations was considerably different among the tree species studied. Of the tested ones, alder had the greatest rhizosphere effect on N transformation, indicating different capacities of tree species to facilitate N turnover in the rhizosphere.


2020 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Reinhard Well ◽  
Birgit Pfeiffer ◽  
Klaus Dittert ◽  
Sebastian Floßmann ◽  
...  

&lt;p&gt;Growing plants affect soil moisture, mineral N and organic C (C&lt;sub&gt;org&lt;/sub&gt;) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (C&lt;sub&gt;org&lt;/sub&gt; and NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; availability for denitrification leading to increased N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher C&lt;sub&gt;org&lt;/sub&gt; availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N&lt;sub&gt;2&lt;/sub&gt;O/(N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt;) ratios.&lt;/p&gt;&lt;p&gt;We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg&lt;sup&gt;-1&lt;/sup&gt; (Ca(&lt;sup&gt;15&lt;/sup&gt;NO&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;, 60 at%), and the &lt;sup&gt;15&lt;/sup&gt;N tracer method was applied to estimate plant N uptake, N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; emissions. To link denitrification with available C in the rhizosphere, &lt;sup&gt;13&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; pulse labeling (5 g Na&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;13&lt;/sup&gt;CO&lt;sub&gt;3&lt;/sub&gt;, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO&lt;sub&gt;2&lt;/sub&gt; evolving from soil was trapped in NaOH for &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C analyses, and gas samples were taken for analysis of N&lt;sub&gt;2&lt;/sub&gt;O and N&lt;sub&gt;2&lt;/sub&gt; from the headspace above the soil surface every 12 h.&lt;/p&gt;&lt;p&gt;Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt; fluxes, cumulative N emissions, and N&lt;sub&gt;2&lt;/sub&gt;O production pathways. In addition, total N&lt;sub&gt;2&lt;/sub&gt;O+N&lt;sub&gt;2&lt;/sub&gt; emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (&lt;sup&gt;13&lt;/sup&gt;C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher C&lt;sub&gt;org&lt;/sub&gt; availability in pots with large root systems did not lead to higher denitrification rates as NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; was limited due to plant uptake. In conclusion, plant growth controlled water and NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; uptake and, subsequently, formation of anaerobic hotspots for denitrification.&lt;/p&gt;


2001 ◽  
Vol 1 ◽  
pp. 90-95 ◽  
Author(s):  
Abdul R. Bah ◽  
Zaharah A. Rahman

Use of cheap, N-rich, and environmentally benign legume green manures to correct N deficiency in infertile soils is a very attractive option in the humid tropics. Understanding the influence of management and climate on their effectiveness, and quantifying their contribution to crop productivity, is therefore crucial for technology adoption and adaptation. Mineral N buildup and the contribution to N uptake in maize were studied in an Ultisol amended with fresh Gliricidia leaves. Net mineral N accumulation was compared in mulched and incorporated treatments in a field incubation study. The 15N isotope dilution technique was used to quantify N supplied to maize by Gliricidia leaves in an alley cropping. Mineral N accumulation was slow, but was much greater after incorporation than after mulching. Also, N buildup was always higher in the topsoil (0 to 10 cm) than in the subsoil (10 to 20 cm). More NO3-N was leached than NH4-N, and the effect was greater in the incorporated treatment. Surface-applied Gliricidia leaves significantly increased N uptake by maize, and supplied >30% of the total N in the stover and >20% of that in the corn grain, even in the presence of hedgerows. Thus Gliricidia leaf mulch has immense potential to improve productivity in tropical soils.


Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 524 ◽  
Author(s):  
Misato Toda ◽  
Yoshitaka Uchida

Legumes add not only nitrogen (N), but also carbon (C) to soils, so their effects on the soil microbial community may be different from those of chemical fertiliser. Soil microbes often compete with plants for N when excess C is applied due to their increased N immobilisation potentials and denitrification. In the present study we evaluated the effects of the 9-year use of a green manure legume (hairy vetch; Vicia villosa) in a greenhouse tomato system on soil microbial community structures as well as on the decrease of nitrate when rice straw was incorporated into the soil. Soil microbial community structures and their diversity were altered by the long-term use of legumes. The ratios of Acidobacteria, Gemmatimonadetes and Proteobacteria increased in the hairy vetch soils. The rates of decrease in nitrate were similar in soils with a history of chemical fertiliser and hairy vetch, following the addition of rice straw. In addition, during incubation with added rice straw, the difference between the two soil microbial community structures became less clear within 2 weeks. Thus, we conclude that even though growing a green manure legume changed soil bacterial community structures, this did not result in relatively faster loss of available N for plants when rice straw was added to the soils.


2011 ◽  
Vol 35 (4) ◽  
pp. 1337-1345 ◽  
Author(s):  
José Alan de Almeida Acosta ◽  
Telmo Jorge Carneiro Amado ◽  
Andreas de Neergaard ◽  
Mads Vinther ◽  
Leandro Souza da Silva ◽  
...  

This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.


2017 ◽  
Vol 22 (3) ◽  
pp. 139-148
Author(s):  
Jauhari Syamsiyah ◽  
Sumarno Sumarno ◽  
Suryono Suryono ◽  
Nur Echsan Muhamat Rajab ◽  
Ida Aryaningrum

Soil fertility is a crucial factor determining the growth and yield of plants. The increase of nutrient content and availability in soil can be achieved by fertilization. A field experiment was conducted using a Randomized Completely Block Design (RCBD) with two factors and three replications in order to study the effects of Mixed Source of Fertilizer (MSF) application on the nutrient contents in Vertisol and its relationship to the growth and yield of mustard. The first factor was the three MSF formulas (F1, F2, F3) and second factor was the doses of MSF (0; 2.5; 5.0; 7.5; 10 Mg ha-1) applied to the soil. At the end of the experiment, the soil pH, CEC, organic-C, total-N, available-P and exchangeable-K contents were measured. The results show that there are no significant differences on the soil chemical characteristics, such as pH, organic-C content, available-P, exchangeable-K, -Ca and -Mg measured after application of different MSF formulas to the soil. Meanwhile, the increase of MSF doses applied to the soil significantly increases organic-C content, total-N, available-P and exchangeable-K in the soil. The significant increase of available-P (by 29.13%) and total-N (by 24.1%) occured after application of MSF at 5.0 Mg ha-1 and the increase of exchangeable-K (by 50%) is achieved after application of 7.5 Mg ha-1, in comparison to that without MSF application. The height and fresh weight of mustard increase in accordance with the increase of MSF doses applied. The application of 10.0 Mg ha-1 MSF results in the highest height and fresh weight of the mustard up to 63.9% and 620%, respectively. The height and fresh weight of mustard are positively correlated to the total-N, available-P and exchangeable-K in the soil. The MSF is an alternative fertilizer that can be used to improve Vertisol fertility and plant growth. 


Author(s):  
Željko S. Dželetović ◽  
Nevena Lj. Mihailović

Based on a greenhouse experiment, we evaluated nitrogen availability in the surface mineral layer of soil under various natural meadow stands by analyzing the following soil characteristics: total organic C, total N, initial content of easily available N inorganic forms, mineralized N content obtained by aerobic and anaerobic incubations and A-value. The experiment was performed on a test plant and through the application of urea enriched with 5.4 % 15N. The investigated soils under natural meadows are characterized with comparatively high mineralization intensity and high N availability indices. Contents of mineral N produced by aerobic incubation and the intensity of the mineralization correlate with the total organic C in the soil and the total N in the soil. Correlation of the availability index of the soil N produced by aerobic incubation with the total organic C and the total N in the soil under natural meadows is almost linear (r = 0.9981 and r = 0.9997, respectively). Contents of mineral N produced by anaerobic incubation, as well as the corresponding N availability and mineralization intensity indices correlate poorly with the mentioned parameters. Efficiency of nitrogen utilization from the applied N-fertilizer by the test crop varies within a wide range of values and correlates with the biomass yields of the test crop.


Sign in / Sign up

Export Citation Format

Share Document