scholarly journals Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nur Suhanawati Ashaari ◽  
Mohd Hairul Ab. Rahim ◽  
Suriana Sabri ◽  
Kok Song Lai ◽  
Adelene Ai-Lian Song ◽  
...  

AbstractLinalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis–Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10–3 µM−1 s−1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 203
Author(s):  
Alejandro Sánchez-Salvador ◽  
Miguel de Vega

The catalytic active site of the Polymerization Domain (PolDom) of bacterial Ligase D is designed to promote realignments of the primer and template strands and extend mispaired 3′ ends. These features, together with the preferred use of ribonucleotides (NTPs) over deoxynucleotides (dNTPs), allow PolDom to perform efficient double strand break repair by nonhomologous end joining when only a copy of the chromosome is present and the intracellular pool of dNTPs is depleted. Here, we evaluate (i) the role of conserved histidine and serine/threonine residues in NTP insertion, and (ii) the importance in the polymerization reaction of a conserved lysine residue that interacts with the templating nucleotide. To that extent, we have analyzed the biochemical properties of variants at the corresponding His651, Ser768, and Lys606 of Pseudomonas aeruginosa PolDom (Pa-PolDom). The results show that preferential insertion of NMPs is principally due to the histidine that also contributes to the plasticity of the active site to misinsert nucleotides. Additionally, Pa-PolDom Lys606 stabilizes primer dislocations. Finally, we show that the active site of PolDom allows the efficient use of 7,8-dihydro-8-oxo-riboguanosine triphosphate (8oxoGTP) as substrate, a major nucleotide lesion that results from oxidative stress, inserting with the same efficiency both the anti and syn conformations of 8oxoGMP.


2004 ◽  
Vol 186 (23) ◽  
pp. 7881-7887 ◽  
Author(s):  
Celeste L. V. Johnson ◽  
Marian L. Buszko ◽  
Thomas A. Bobik

ABSTRACT The PduO enzyme of Salmonella enterica is an ATP:cob(I)alamin adenosyltransferase that catalyzes the final step in the conversion of vitamin B12 to coenzyme B12. The primary physiological role of this enzyme is to support coenzyme B12-dependent 1,2-propanediol degradation, and bioinformatic analysis has indicated that it has two domains. Here the PduO adenosyltransferase was produced in Escherichia coli, solubilized from inclusion bodies, purified to apparent homogeneity, and partially characterized biochemically. The Km values of PduO for ATP and cob(I)alamin were 19.8 and 4.5 μM, respectively, and the enzyme V max was 243 nmol min−1 mg of protein−1. Further investigations showed that PduO was active with ATP and partially active with deoxy-ATP, but lacked measurable activity with other nucleotides. 31P nuclear magnetic resonance established that triphosphate was a product of the PduO reaction, and kinetic studies indicated a ternary complex mechanism. A series of truncated versions of the PduO protein were produced in Escherichia coli, partially purified, and used to show that adenosyltransferase activity is associated with the N-terminal domain. The N-terminal domain was purified to near homogeneity and shown to have biochemical properties and kinetic constants similar to those of the full-length enzyme. This indicated that the C-terminal domain was not directly involved in catalysis or substrate binding and may have another role.


2020 ◽  
Vol 21 (22) ◽  
pp. 8641
Author(s):  
Stefan R. Marsden ◽  
Duncan G. G. McMillan ◽  
Ulf Hanefeld

The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180–250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates.


2021 ◽  
Vol 22 (9) ◽  
pp. 4619
Author(s):  
Carlos A. Ramirez-Mondragon ◽  
Megin E. Nguyen ◽  
Jozafina Milicaj ◽  
Bakar A. Hassan ◽  
Frank J. Tucci ◽  
...  

It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1608
Author(s):  
Irina V. Zueva ◽  
Sofya V. Lushchekina ◽  
Ian R. Pottie ◽  
Sultan Darvesh ◽  
Patrick Masson

Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated acetophenone derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.


Author(s):  
Dongxia Wu ◽  
Tinting Ran ◽  
Weiwu Wang ◽  
Dongqing Xu

Serralysin is a well studied metalloprotease, and typical serralysins are not thermostable. The serralysin isolated fromSerratiasp. FS14 was found to be thermostable, and in order to reveal the mechanism responsible for its thermostability, the crystal structure of serralysin fromSerratiasp. FS14 was solved to a crystallographicRfactor of 0.1619 at 1.10 Å resolution. Similar to its homologues, it mainly consists of two domains: an N-terminal catalytic domain and a `parallel β-roll' C-terminal domain. Comparative studies show that the shape of the catalytic active-site cavity is more open owing to the 189–198 loop, with a short 310-helix protruding further from the molecular surface, and that the β-sheets comprising the `parallel β-roll' are longer than those in its homologues. The formation of hydrogen bonds from one of the nonconserved residues (Asn200) to Lys27 may contribute to the thermostability.


2001 ◽  
Vol 360 (3) ◽  
pp. 727-736 ◽  
Author(s):  
Bernd NIDETZKY ◽  
Christian EIS

Fungal trehalose phosphorylase is classified as a family 4 glucosyltransferase that catalyses the reversible phosphorolysis of α,α-trehalose with net retention of anomeric configuration. Glucosyl transfer to and from phosphate takes place by the partly rate-limiting interconversion of ternary enzyme–substrate complexes formed from binary enzyme–phosphate and enzyme–α-d-glucopyranosyl phosphate adducts respectively. To advance a model of the chemical mechanism of trehalose phosphorylase, we performed a steady-state kinetic study with the purified enzyme from the basidiomycete fungus Schizophyllum commune by using alternative substrates, inhibitors and combinations thereof in pairs as specific probes of substrate-binding recognition and transition-state structure. Orthovanadate is a competitive inhibitor against phosphate and α-d-glucopyranosyl phosphate, and binds 3×104-fold tighter (Ki≈ 1μM) than phosphate. Structural alterations of d-glucose at C-2 and O-5 are tolerated by the enzyme at subsite +1. They lead to parallel effects of approximately the same magnitude (slope = 1.14; r2 = 0.98) on the reciprocal catalytic efficiency for reverse glucosyl transfer [log (Km/kcat)] and the apparent affinity of orthovanadate determined in the presence of the respective glucosyl acceptor (log Ki). An adduct of orthovanadate and the nucleophile/leaving group bound at subsite +1 is therefore the true inhibitor and displays partial transition state analogy. Isofagomine binds to subsite −1 in the enzyme–phosphate complex with a dissociation constant of 56μM and inhibits trehalose phosphorylase at least 20-fold better than 1-deoxynojirimycin. The specificity of the reversible azasugars inhibitors would be explained if a positive charge developed on C-1 rather than O-5 in the proposed glucosyl cation-like transition state of the reaction. The results are discussed in the context of α-retaining glucosyltransferase mechanisms that occur with and without a β-glucosyl enzyme intermediate.


Sign in / Sign up

Export Citation Format

Share Document