scholarly journals Purification and Initial Characterization of the Salmonella enterica PduO ATP:Cob(I)alamin Adenosyltransferase

2004 ◽  
Vol 186 (23) ◽  
pp. 7881-7887 ◽  
Author(s):  
Celeste L. V. Johnson ◽  
Marian L. Buszko ◽  
Thomas A. Bobik

ABSTRACT The PduO enzyme of Salmonella enterica is an ATP:cob(I)alamin adenosyltransferase that catalyzes the final step in the conversion of vitamin B12 to coenzyme B12. The primary physiological role of this enzyme is to support coenzyme B12-dependent 1,2-propanediol degradation, and bioinformatic analysis has indicated that it has two domains. Here the PduO adenosyltransferase was produced in Escherichia coli, solubilized from inclusion bodies, purified to apparent homogeneity, and partially characterized biochemically. The Km values of PduO for ATP and cob(I)alamin were 19.8 and 4.5 μM, respectively, and the enzyme V max was 243 nmol min−1 mg of protein−1. Further investigations showed that PduO was active with ATP and partially active with deoxy-ATP, but lacked measurable activity with other nucleotides. 31P nuclear magnetic resonance established that triphosphate was a product of the PduO reaction, and kinetic studies indicated a ternary complex mechanism. A series of truncated versions of the PduO protein were produced in Escherichia coli, partially purified, and used to show that adenosyltransferase activity is associated with the N-terminal domain. The N-terminal domain was purified to near homogeneity and shown to have biochemical properties and kinetic constants similar to those of the full-length enzyme. This indicated that the C-terminal domain was not directly involved in catalysis or substrate binding and may have another role.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nur Suhanawati Ashaari ◽  
Mohd Hairul Ab. Rahim ◽  
Suriana Sabri ◽  
Kok Song Lai ◽  
Adelene Ai-Lian Song ◽  
...  

AbstractLinalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis–Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10–3 µM−1 s−1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.


2002 ◽  
Vol 70 (7) ◽  
pp. 3611-3620 ◽  
Author(s):  
Fernando Ruiz-Pérez ◽  
Rocío León-Kempis ◽  
Araceli Santiago-Machuca ◽  
Guadalupe Ortega-Pierres ◽  
Eileen Barry ◽  
...  

ABSTRACT Gram-negative bacterial proteins which are exported from the cytosol to the external environment by the type V secretion system are also known as autotransporters. Once translocated to the periplasmic compartment by the sec-dependent general secretory pathway, their C-terminal domain forms a pore through which the N-terminal domain travels to the outer membrane without the need of other accessory proteins. MisL (protein of membrane insertion and secretion) is a protein of unknown function located in the pathogenicity island SPI-3 of Salmonella enterica and classified as an autotransporter due to its high homology to Escherichia coli AIDA-I. In the present work, the MisL C-terminal translocator domain was used to display the immunodominant B-cell epitope of the circumsporozoite protein (CSP) from Plasmodium falciparum on the surface of Salmonella enterica serovar Typhimurium (serovar Typhimurium SL3261) and serovar Typhi (serovar Typhi CVD 908). The MisL β domain was predicted by alignment with AIDA-I, amplified from serovar Typhimurium SL3261, cloned in a plasmid fused to four repeats of the tetrapeptide NANP behind the Escherichia coli heat-labile enterotoxin B subunit signal peptide to ensure periplasmic traffic, and expressed under the control of the anaerobically inducible nirB promoter. The fusion protein was translocated to the outer membrane of both bacterial strains, although the foreign epitope was displayed more efficiently in serovar Typhimurium SL3261, which elicited a better specific antibody response in BALB/c mice. More importantly, antibodies were able to recognize the native CSP in P. falciparum sporozoites. These results confirm that MisL is indeed an autotransporter and that it can be used to express foreign immunogenic epitopes on the surface of gram-negative bacteria.


1983 ◽  
Vol 61 (12) ◽  
pp. 1292-1303 ◽  
Author(s):  
Francis Y. M. Choy ◽  
Ya-Pin Lee

Sugar phosphate phosphohydrolase was purified approximately 500- to 600-fold to apparent homogeneity from Escherichia coli B, Escherichia coli C, Escherichia coli var. communior, Escherichia acidilactici, Enterobacter aerogenes, Neisseria meningitidis, and Saccharomyces cereviseae. The molecular weights of the enzyme as estimated by gel filtration ranged from 97 × 103 to 101 × 103. The enzyme was composed of two subunits with the same molecular weight which ranged from 50 × 103 to 52 × 103, as determined by sodium dodecyl sulfate gel electrophoresis. Homogeneous enzyme preparations hydrolyse all the tested α-D-aldohexose 1-phosphate, D-(keto or aldo)hexose 6-phosphate, and pentose phosphate substrates significantly. When the microorganisms were transferred from growth medium with 1% glucose to that without glucose, there were dramatic increases in both the specific and total enzyme activities. At least three isozymes appeared to be present in S. cereviseae, and two appeared to be present in E. coli B, E. coli var. communior, and N. meningitidis. Rabbit antiserum immunized against sugar phosphate phosphohydrolase purified from E. coli B cross-reacted with both the crude extracts and purified preparations of the enzyme from the other microorganisms. The presence of neither sugar phosphate phosphohydrolase activity nor immunocross-reacting material was detected in the following microorganisms: Aspergillus niger, Azotobacter chroococcum, Bacillus subtilis, Bacillus pumilis, Citrobacter freundii, Clostridium butyricum, Corynebacterium xerosis, Flavobacterium aquatile, Flavobacterium synxanthum, Lactobacillus bulgaricus, Micrococcus coralinus, Neisseria perflava, Neurospora crassa, Penicilium expansum, Penicilium notatum, Proteus mirabilis, Proteus vulgaris, Pseudomonas fluorescens, Saccharomyces fermenti, Sarcina lutea, and Streptomyces antibioticus. At present, no conclusive relationship can be established between the phosphoenolpyruvate phosphotransferase system and the enzyme sugar phosphate phosphohydrolase among microorganisms. The physiological role of sugar phosphate phosphohydrolase as a transferase and regulatory enzyme is discussed.


2021 ◽  
Vol 22 (15) ◽  
pp. 7928
Author(s):  
Daniel J. Goodall ◽  
Katie H. Jameson ◽  
Michelle Hawkins ◽  
Christian J. Rudolph

Termination of DNA replication, the final stage of genome duplication, is surprisingly complex, and failures to bring DNA synthesis to an accurate conclusion can impact genome stability and cell viability. In Escherichia coli, termination takes place in a specialised termination area opposite the origin. A ‘replication fork trap’ is formed by unidirectional fork barriers via the binding of Tus protein to genomic ter sites. Such a fork trap system is found in some bacterial species, but it appears not to be a general feature of bacterial chromosomes. The biochemical properties of fork trap systems have been extensively characterised, but little is known about their precise physiological roles. In this study, we compare locations and distributions of ter terminator sites in E. coli genomes across all phylogenetic groups, including Shigella. Our analysis shows that all ter sites are highly conserved in E. coli, with slightly more variability in the Shigella genomes. Our sequence analysis of ter sites and Tus proteins shows that the fork trap is likely to be active in all strains investigated. In addition, our analysis shows that the dif chromosome dimer resolution site is consistently located between the innermost ter sites, even if rearrangements have changed the location of the innermost termination area. Our data further support the idea that the replication fork trap has an important physiological role that provides an evolutionary advantage.


2018 ◽  
Vol 41 (4) ◽  
pp. 353-363
Author(s):  
Alberto J. Valencia-Botin ◽  
Melesio Gutiérrez-Lomelí ◽  
Juan A. Morales-Del-Río ◽  
Pedro J. Guerrero-Medina ◽  
Miguel A. Robles-García ◽  
...  

Actualmente existe la necesidad de hacer frente al problema de la resistencia a los antibióticos y al uso indiscriminado de fungicidas químicos en la agricultura. El objetivo de este trabajo fue evaluar el efecto inhibitorio de extractos acuosos, metanólicos, acetónicos y hexánicos de hoja y tallo de Vitex mollis Kunth (Lamiaceae) contra diferentes bacterias (Escherichia coli, Micrococcus luteus, Salmonella enterica y Staphylococcus aureus) y especies del hongo Fusarium (F. verticillioides, F. oxysporum, F. tapsinum y F. oxysporum f.sp. lycopersici) de importancia en la salud y en la agricultura, así como determinar su composición química general. Se determinaron las concentraciones inhibitorias mínimas (CIM) de todos los extractos por la técnica de microdilución, excepto del hexánico, que no presentó inhibición en las bacterias estudiadas. S. enterica fue la bacteria que mostró mayor sensibilidad al extracto metanólico de tallo (CIM = 28 μg mL-1), le siguieron M. luteus (CIM = 32 μg mL-1), S. aureus (CIM = 75 μg mL-1) y E. coli (CIM = 80 μg mL- 1). Los extractos metanólicos y acuosos de tallo presentaron mayor porcentaje de inhibición contra los diferentes tipos de Fusarium evaluados por el método de dilución en agar. Los extractos de V. mollis inhibieron a F. verticillioides entre 62 y 91 % con 120 μg mL-1 de extracto. El orden de las especies de hongos inhibidas por los extractos fue: F. verticillioides > F. oxysporum > F. tapsinum > F. oxysporum f.sp. lycopersici. La composición química de las especies se determinó mediante pruebas para fenoles, taninos, flavonoides, triterpenos, alcaloides, cumarinas y saponinas. Ninguno de los extractos presentó alcaloides y saponinas. Los fenoles (37.1 mg EAG/g muestra seca) y flavonoides (26.8 mg EQ/g muestra seca) fueron los compuestos mayoritarios en los extractos metanólicos y acuosos. En conclusión, se requieren cantidades muy pequeñas de extracto para la inhibición de bacterias y de Fusarium; por lo tanto, V. mollis puede ser considerada una fuente de metabolitos para este fin y en la agricultura como control alternativo dentro de un manejo integrado de enfermedades.


Sign in / Sign up

Export Citation Format

Share Document