scholarly journals Retraction Note: Integrative analysis of the circRNA–miRNA regulatory network in atrial fibrillation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhong‑bao Ruan ◽  
Fei Wang ◽  
Qiu‑ping Yu ◽  
Ge‑cai Chen ◽  
Li Zhu
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhong-bao Ruan ◽  
Fei Wang ◽  
Qiu-ping Yu ◽  
Ge-cai Chen ◽  
Li Zhu

AbstractWe aimed to investigate the circRNA–miRNA regulatory network in atrial fibrillation (AF) by using Cytoscape and HMDD v3.0. Finally, 120 differentially expressed circRNAs in peripheral blood monocytes of 4 AF patients were preliminarily screened by circRNA microarray. circRNA_4648, circRNA_4631, and circRNA_2875 were the first four circRNAs with the most binding nodes in the circRNA–miRNA network. The top three most frequent miRNAs for up-regulated circRNAs were hsa-miR-328 that interacted with 5 up-regulated circRNAs, hsa-miR-4685-5p with 4 up-regulated circRNAs, hsa-miR-3150a-3p, hsa-miR-4649-5p, hsa-miR-4783-3p, and hsa-miR-8073 with 3 up-regulated circRNAs,, while the top three most frequent miRNAs for down-regulated circRNAs were hsa-miR-328 that interacted with 14 down-regulated circRNAs, hsa-miR-4685-5p with 11 down-regulated circRNAs and hsa-miR-661 with 9 down-regulated circRNAs. According to HMDD v3.0, five up-regulated and eleven down-regulated circRNAs were found to interact with AF related miRNAs. These results indicated the possible regulatory network between circRNAs and miRNAs in the pathogenesis of AF.


2018 ◽  
Vol 7 (11) ◽  
pp. 419 ◽  
Author(s):  
Sophia Subat ◽  
Kentaro Inamura ◽  
Hironori Ninomiya ◽  
Hiroko Nagano ◽  
Sakae Okumura ◽  
...  

The EGFR gene was one of the first molecules to be selected for targeted gene therapy. EGFR-mutated lung adenocarcinoma, which is responsive to EGFR inhibitors, is characterized by a distinct oncogenic pathway in which unique microRNA (miRNA)–mRNA interactions have been observed. However, little information is available about the miRNA–mRNA regulatory network involved. Both miRNA and mRNA expression profiles were investigated using microarrays in 155 surgically resected specimens of lung adenocarcinoma with a known EGFR mutation status (52 mutated and 103 wild-type cases). An integrative analysis of the data was performed to identify the unique miRNA–mRNA regulatory network in EGFR-mutated lung adenocarcinoma. Expression profiling of miRNAs and mRNAs yielded characteristic miRNA/mRNA signatures (19 miRNAs/431 mRNAs) in EGFR-mutated lung adenocarcinoma. Five of the 19 miRNAs were previously listed as EGFR-mutation-specific miRNAs (i.e., miR-532-3p, miR-500a-3p, miR-224-5p, miR-502-3p, and miR-532-5p). An integrative analysis of miRNA and mRNA expression revealed a refined list of putative miRNA–mRNA interactions, of which 63 were potentially involved in EGFR-mutated tumors. Network structural analysis provided a comprehensive view of the complex miRNA–mRNA interactions in EGFR-mutated lung adenocarcinoma, including DUSP4 and MUC4 axes. Overall, this observational study provides insight into the unique miRNA–mRNA regulatory network present in EGFR-mutated tumors. Our findings, if validated, would inform future research examining the interplay of miRNAs and mRNAs in EGFR-mutated lung adenocarcinoma.


2015 ◽  
Vol 21 ◽  
pp. 3505-3513 ◽  
Author(s):  
Hao Zhang ◽  
Liming Liu ◽  
Jianguo Hu ◽  
Long Song

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shengjue Xiao ◽  
Yufei Zhou ◽  
Qiaozhi Liu ◽  
TianTian Zhang ◽  
Defeng Pan

Atrial fibrillation (AF) is one of the most common supraventricular arrhythmias worldwide. However, the specific molecular mechanism underlying AF remains unclear. Our study is aimed at identifying pivotal microRNAs (miRNAs) and targeting genes associated with persistent AF (pAF) using bioinformatics analysis. Three gene expression array datasets (GSE31821, GSE41177, and GSE79768) and an miRNA expression array dataset (GSE68475) associated with pAF were downloaded. Differentially expressed genes (DEGs) were identified using the LIMMA package, and differentially expressed miRNAs (DEMs) were screened from GSE68475. Target genes for DEMs were predicted using the miRTarBase database, and intersections between these target genes and DEGs were selected for further analysis, including the generation of protein–protein interaction (PPI) network, miRNA–transcription factor–target regulatory network, and drug–gene network. A total of 264 DEGs and 40 DEMs were identified between the pAF and control groups. Functional and pathway enrichment analyses of up- and downregulated DEGs were performed. The common genes (CGs) were primarily enriched in the phosphoinositide 3-kinase- (PI3K-) protein kinase B (Akt) signaling pathway, negative regulation of cell division, and response to hypoxia. The PPI network, miRNA–transcription factor–target regulatory network, and drug–gene network were constructed using Cytoscape. The present study revealed several novel miRNAs and genes involved in pAF. We speculated that miR-4298, miR-3125, miR-4306, and miR-671-5p could represent significant miRNAs that act on the target gene superoxide dismutase 2 (SOD2) during the development of pAF and may serve as essential biomarkers for pAF diagnosis and treatment. Moreover, MYC might function in pAF pathogenesis through the PI3K–Akt signaling pathway.


2021 ◽  
Vol Volume 14 ◽  
pp. 1307-1321
Author(s):  
Jintao Zhang ◽  
Zihan Wang ◽  
Dong Zhang ◽  
Yun Pan ◽  
Xiaofei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document