scholarly journals Simulation study towards quantitative X-ray and neutron tensor tomography regarding the validity of linear approximations of dark-field anisotropy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Graetz

AbstractTensor tomography is fundamentally based on the assumption of a both anisotropic and linear contrast mechanism. While the X-ray or neutron dark-field contrast obtained with Talbot(-Lau) interferometers features the required anisotropy, a preceding detailed study of dark-field signal origination however found its specific orientation dependence to be a non-linear function of the underlying anisotropic mass distribution and its orientation, especially challenging the common assumption that dark-field signals are describable by a function over the unit sphere. Here, two approximative linear tensor models with reduced orientation dependence are investigated in a simulation study with regard to their applicability to grating based X-ray or neutron dark-field tensor tomography. By systematically simulating and reconstructing a large sample of isolated volume elements covering the full range of feasible anisotropies and orientations, direct correspondences are drawn between the respective tensors characterizing the physically based dark-field model used for signal synthesization and the mathematically motivated simplified models used for reconstruction. The anisotropy of freely rotating volume elements is thereby confirmed to be, for practical reconstruction purposes, approximable both as a function of the optical axis’ orientation or as a function of the interferometer’s grating orientation. The eigenvalues of the surrogate models’ tensors are found to exhibit fuzzy, yet almost linear relations to those of the synthesization model. Dominant orientations are found to be recoverable with a margin of error on the order of magnitude of 1$$^{\circ }$$ ∘ . Although the input data must adequately address the full orientation dependence of dark-field anisotropy, the present results clearly support the general feasibility of quantitative X-ray dark-field tensor tomography within an inherent yet acceptable statistical margin of uncertainty.

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206302 ◽  
Author(s):  
Janne Vignero ◽  
Nicholas W. Marshall ◽  
Greetje Vande Velde ◽  
Kristina Bliznakova ◽  
Hilde Bosmans

2021 ◽  
Author(s):  
Weijie Tao ◽  
Yongjin Sung ◽  
Sally Ji Who Kim ◽  
Qiu Huang ◽  
Grant T. Gullberg ◽  
...  

Author(s):  
G. Thomas ◽  
K. M. Krishnan ◽  
Y. Yokota ◽  
H. Hashimoto

For crystalline materials, an incident plane wave of electrons under conditions of strong dynamical scattering sets up a standing wave within the crystal. The intensity modulations of this standing wave within the crystal unit cell are a function of the incident beam orientation and the acceleration voltage. As the scattering events (such as inner shell excitations) that lead to characteristic x-ray production are highly localized, the x-ray intensities in turn, are strongly determined by the orientation and the acceleration voltage. For a given acceleration voltage or wavelength of the incident wave, it has been shown that this orientation dependence of the characteristic x-ray emission, termed the “Borrmann effect”, can also be used as a probe for determining specific site occupations of elemental additions in single crystals.


Author(s):  
E D Boyes ◽  
L Hanna

A VG HB501 FEG STEM has been modified to provide track whilst tilt [TWIT] facilities for controllably tilting selected and initially randomly aligned nanometer-sized particles into the high symmetry zone-axis orientations required for microdiffraction, lattice imaging and chemical microanalysis at the unit cell level. New electronics display in alternate TV fields and effectively in parallel on split [+VTR] or adjacent externally synchronized screens, the micro-diffraction pattern from a selected area down to <1nm2 in size, together with the bright field and high angle annular dark field [HADF] STEM images of a much wider [˜1μm] area centered on the same spot. The new system makes it possible to tilt each selected and initially randomly aligned small particle into a zone axis orientation for microdiffraction, or away from it to minimize orientation effects in chemical microanalysis. Tracking of the inevitable specimen movement with tilt is controlled by the operator, with realtime [60Hz] update of the target designation in real space and the diffraction data in reciprocal space. The spot mode micro-DP and images of the surrounding area are displayed continuously. The regular motorized goniometer stage for the HB501STEM is a top entry design but the new control facilities are almost equivalent to having a stage which is eucentric with nanometric precision about both tilt axes.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Camilo Fuentes Serrano ◽  
Juan Reinaldo Estevez Alvares ◽  
Alfredo Montero Alvarez ◽  
Ivan Pupo Gonzales ◽  
Zahily Herrero Fernandez ◽  
...  

A method for determination of Cr, Fe, Co, Ni, Cu, Zn, Hg and Pb in waters by Energy Dispersive X Ray Fluorescence (EDXRF) was implemented, using a radioisotopic source of 238Pu. For previous concentration was employed a procedure including a coprecipitation step with ammonium pyrrolidinedithiocarbamate (APDC) as quelant agent, the separation of the phases by filtration, the measurement of filter by EDXRF and quantification by a thin layer absolute method. Sensitivity curves for K and L lines were obtained respectively. The sensitivity for most elements was greater by an order of magnitude in the case of measurement with a source of 238Pu instead of 109Cd, which means a considerable decrease in measurement times. The influence of the concentration in the precipitation efficiency was evaluated for each element. In all cases the recoveries are close to 100%, for this reason it can be affirmed that the method of determination of the studied elements is quantitative. Metrological parameters of the method such as trueness, precision, detection limit and uncertainty were calculated. A procedure to calculate the uncertainty of the method was elaborated; the most significant source of uncertainty for the thin layer EDXRF method is associated with the determination of instrumental sensitivities. The error associated with the determination, expressed as expanded uncertainty (in %), varied from 15.4% for low element concentrations (2.5-5 μg/L) to 5.4% for the higher concentration range (20-25 μg/L).


2003 ◽  
Vol 764 ◽  
Author(s):  
D.N. Zakharov ◽  
Z. Liliental-Weber ◽  
A. Motayed ◽  
S.N. Mohammad

AbstractOhmic Ta/Ti/Ni/Au contacts to n-GaN have been studied using high resolution electron microscopy (HREM), energy dispersive X-ray spectrometry (EDX) and electron energy loss spectrometry (EELS). Two different samples were used: A - annealed at 7500C withcontact resistance 5×10-6 Ω cm2 and B-annealed at 7750C with contact resistance 6×10-5 Ω cm2. Both samples revealed extensive in- and out-diffusion between deposited layers with some consumption ofGaNlayerand formation of TixTa1-xN50 (0<x<25) at the GaN interface. Almost an order of magnitude difference in contact resistances can be attributed to structure and chemical bonding of Ti-O layers formed on the contact surfaces.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1238
Author(s):  
Eduardo Laga ◽  
David Dalmau ◽  
Sofía Arregui ◽  
Olga Crespo ◽  
Ana I. Jimenez ◽  
...  

The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.


Sign in / Sign up

Export Citation Format

Share Document