scholarly journals Spatiotemporal expression of IgLON family members in the developing mouse nervous system

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sydney Fearnley ◽  
Reesha Raja ◽  
Jean-François Cloutier

AbstractDifferential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.

Author(s):  
Richard D Brower

Abstract Evaluation of the developing nervous system is a standard and relatively sensitive component of routine fetal ultrasonography. Medical school learning objectives should direct students to consolidate core concepts related to normal and abnormal fetal nervous system development through critical observation of this commonly performed clinical procedure.


2019 ◽  
Vol 30 (2) ◽  
pp. 640-655 ◽  
Author(s):  
A Vogel Ciernia ◽  
B I Laufer ◽  
H Hwang ◽  
K W Dunaway ◽  
C E Mordaunt ◽  
...  

Abstract Neurodevelopmental disorders (NDDs) affect 7–14% of all children in developed countries and are one of the leading causes of lifelong disability. Epigenetic modifications are poised at the interface between genes and environment and are predicted to reveal insight into NDD etiology. Whole-genome bisulfite sequencing was used to examine DNA cytosine methylation in 49 human cortex samples from 3 different NDDs (autism spectrum disorder, Rett syndrome, and Dup15q syndrome) and matched controls. Integration of methylation changes across NDDs with relevant genomic and genetic datasets revealed differentially methylated regions (DMRs) unique to each type of NDD but with shared regulatory functions in neurons and microglia. NDD DMRs were enriched within promoter regions and for transcription factor binding sites with identified methylation sensitivity. DMRs from all 3 disorders were enriched for ontologies related to nervous system development and genes with disrupted expression in brain from neurodevelopmental or neuropsychiatric disorders. Genes associated with NDD DMRs showed expression patterns indicating an important role for altered microglial function during brain development. These findings demonstrate an NDD epigenomic signature in human cortex that will aid in defining therapeutic targets and early biomarkers at the interface of genetic and environmental NDD risk factors.


2000 ◽  
Vol 20 (2) ◽  
pp. 656-660 ◽  
Author(s):  
Peter J. McKinnon ◽  
Susan K. McLaughlin ◽  
Manuela Kapsetaki ◽  
Robert F. Margolskee

ABSTRACT Sc1 is an extracellular matrix-associated protein whose function is unknown. During early embryonic development, Sc1 is widely expressed, and from embryonic day 12 (E12), Sc1 is expressed primarily in the developing nervous system. This switch in Sc1 expression at E12 suggests an importance for nervous-system development. To gain insight into Sc1 function, we used gene targeting to inactivate mouse Sc1. The Sc1-null mice showed no obvious deficits in any organs. These mice were born at the expected ratios, were fertile, and had no obvious histological abnormalities, and their long-term survival did not differ from littermate controls. Therefore, the function of Sc1 during development is not critical or, in its absence, is subserved by another protein.


Author(s):  
Timothy R. Rice

Abstract Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.


2018 ◽  
Vol 38 (1) ◽  
pp. 147-153
Author(s):  
Amanda O. Ferreira ◽  
Bruno G. Vasconcelos ◽  
Phelipe O. Favaron ◽  
Amilton C. Santos ◽  
Rafael M. Leandro ◽  
...  

ABSTRACT: Central nervous system (CNS) development researches are extremely important to the most common congenital disorders and organogenesis comprehension. However, few studies show the entire developmental process during the critical period. Present research can provide data to new researches related to normal development and abnormalities and changes that occur along the CNS organogenesis, especially nowadays with the need for preliminary studies in animal models, which could be used for experimental research on the influence of viruses, such as the influence of Zika virus on the development of the neural system and its correlation with microcephaly in human newborns. Then, present study describes CNS organogenesis in cattle according to microscopic and macroscopic aspects, identifying structures and correlating to gestational period. Fourteen embryos and nine bovine fetuses at different ages were collected and analyzed. All individuals were measured in order to detect the gestational period. Bovine embryo at 17 days age has its neural tube, cranial neuropore, caudal neuropore and somites developed. After 24 days of development, were observed in cranial part of neural tube five encephalic vesicles denominated: telencephalon, diencephalon, mesencephalon, metencephalon and myelencephalon. In addition, the caudal part of neural tube was identified with the primitive spinal cord. The primordial CNS differentiation occurred from 90 to 110 days. The five encephalic vesicles, primordial spinal cord and the cavities: third ventricule, mesencephalic aqueduct, fourth ventricle and central canal in spinal cord were observed. With 90 days, the main structures were identified: (1) cerebral hemispheres, corpus callosum and fornix, of the telencephalon; (2) interthalamic adhesion, thalamus, hypothalamus and epythalamus (glandula pinealis), of the diencephalon; (3) cerebral peduncles and quadruplets bodies, of the mesencephalon; (4) pons and cerebellum, of the metencephalon; (5) medulla oblongata or bulb, of the myelencephalon; and (6) spinal cord, of the primitive spinal cord. After 110 days of gestation, the five encephalic vesicles and its structures were completely developed. It was noted the presence of the spinal cord with the cervicothoracic and lumbossacral intumescences. In summary, the results describes the formation of the neural tube from the neural plate of the ectoderm, the encephalic vesicles derived from the neural tube and subsequent structural and cavities subdivisions, thus representing the complete embryology of the central nervous system.


2015 ◽  
Vol 47 (Part_A) ◽  
pp. 121-122
Author(s):  
Irene Cheng ◽  
Kazusa Edamura ◽  
Kelvin Chan ◽  
Catherine Jansch ◽  
Danielle L. Heffner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document